Skip to main content
Log in

A Kirchhoff solution to plasmon hybridization

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Using Ohm’s law, a solution to plasmon hybridization via Kirchoff’s equations results in a simple and intuitive picture of a metal nanoparticle dimer as a capacitively coupled circuit. Calculated absorption spectra and surface charge densities show that dimers of different metallic composition support different super- and sub-radiant plasmons compared to homodimers. Strong screening of Coulomb interactions between nanoparticles of different metallic background prohibits the excitation of anti-bonding plasmons, while changes to the free electron conductivity upon a collective response result in coupled plasmon lifetimes which shift as a function of interparticle distance. Smaller separations then result in the longest lived plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998)

    Article  ADS  Google Scholar 

  2. S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  3. K. Willets, Van R.P. Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)

    Article  ADS  Google Scholar 

  4. B. Willingham, D. Brandl, P. Nordlander, Appl. Phys. B Lasers Opt. 93, 209 (2008)

    Article  ADS  Google Scholar 

  5. P.K. Jain, M.A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010)

    Article  ADS  Google Scholar 

  6. K. Li, X. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. B 71, 115409 (2005)

    Article  ADS  Google Scholar 

  7. L.V. Brown, H. Sobhani, J.B. Lassiter, P. Nordlander, N.J. Halas, ACS Nano 4, 819 (2010)

    Article  Google Scholar 

  8. W.-S. Chang, J.B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N.J. Halas, S. Link, Nano Lett. 12, 4977 (2012)

    Article  ADS  Google Scholar 

  9. H. Duan, A.I. Fernández-Domínguez, M. Bosman, S.A. Maier, J.K.W. Yang, Nano Lett. 12, 1683 (2012)

    Article  ADS  Google Scholar 

  10. J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Träger, Phys. Rev. Lett. 89, 257404 (2002)

    Article  ADS  Google Scholar 

  11. C. Sönnichsen, T. Franzl, T. Wilk, von G. Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002)

    Article  ADS  Google Scholar 

  12. M.G. Blaber, A.-I. Henry, J.M. Bingham, G.C. Schatz, Van R.P. Duyne, J. Phys. Chem. C 116, 393 (2012)

    Article  Google Scholar 

  13. D.W. Brandl, N.A. Mirin, P. Nordlander, J. Phys. Chem. B 110, 12302 (2006)

    Article  Google Scholar 

  14. A. Trügler, J.-C. Tinguely, J.R. Krenn, A. Hohenau, U. Hohenester, Phys. Rev. B 83, 081412 (2011)

    Article  ADS  Google Scholar 

  15. S. Sheikholeslami, Y.-W. Jun, P.K. Jain, A.P. Alivisatos, Nano Lett. 10, 2655 (2010)

    Article  ADS  Google Scholar 

  16. F. Hubenthal, C. Hendrich, F. Träger, Appl. Phys. B Lasers Opt. 100, 225 (2010)

    Article  ADS  Google Scholar 

  17. J.M. Gérardy, M. Ausloos, Phys. Rev. B 25, 4204 (1982)

    Article  ADS  Google Scholar 

  18. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  19. N. Engheta, A. Salandrino, A. Alù, Phys. Rev. Lett. 95, 095504 (2005)

    Article  ADS  Google Scholar 

  20. R.C. Jones, Phys. Rev. 68, 93 (1945)

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  22. R. Rojas, F. Claro, Phys. Rev. B 34, 3730 (1986)

    Article  ADS  Google Scholar 

  23. D.W. Brandl, C. Oubre, P. Nordlander, J. Chem. Phys. 123, 024701 (2005)

    Article  ADS  Google Scholar 

  24. N.W. Ashcroft, N.D. Mermin, Solid State Physics, Chap. 26. (Saunders Co, Philadelphia, 1976)

    Google Scholar 

  25. A. Pinchuk, von G. Plessen, U. Kreibig, J. Phys. D Appl. Phys. 37, 3133 (2004)

    Article  ADS  Google Scholar 

  26. F. Hao, P. Nordlander, M.T. Burnett, S.A. Maier, Phys. Rev. B 76, 245417 (2007)

    Article  ADS  Google Scholar 

  27. D. Solis Jr., B. Willingham, S.L. Nauert, L.S. Slaughter, J. Olson, P. Swanglap, A. Paul, W.-S. Chang, S. Link, Nano Lett. 12, 1349 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Robert A. Welch Foundation (C-1664) and the National Science Foundation (CHE-0955286). The authors would like to thank Peter Nordlander for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willingham, B., Link, S. A Kirchhoff solution to plasmon hybridization. Appl. Phys. B 113, 519–525 (2013). https://doi.org/10.1007/s00340-013-5501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5501-7

Keywords

Navigation