Skip to main content
Log in

Quantitative simulation of photoacoustic signals using finite element modelling software

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper aims to demonstrate the quantitative simulation of photoacoustic signals using finite element modelling software. The software Comsol Multiphysics is used to calculate the response of a differential Helmholtz resonator cell previously modeled using an electrical analogy. Quality factors and resonance frequencies are compared with experimental ones. Moreover, for the first time, the absorption coefficient of the gas sample and the laser intensity are also used to quantitatively predict photoacoustic signal that can be obtained in such a configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994), pp. 163–238

  2. A. Grossel, V. Zéninari, B. Parvitte, L. Joly, G. Durry, D. Courtois, Infrared Phys. Technol. 51, 95–101 (2007)

    Article  ADS  Google Scholar 

  3. A. Grossel, V. Zéninari, B. Parvitte, L. Joly, G. Durry, D. Courtois, Appl. Phys. B: Lasers Opt. 88, 483–492 (2007)

    Article  ADS  Google Scholar 

  4. M.A. Gondal, M.A. Dastageer, J. Environ. Sci. Health - Part A Toxic/Hazard. Subst. Environ. Eng. 45, 1405–1412 (2010)

  5. A.A.I. Khalil, M.A. Gondal, N. Al-Suliman, Appl. Phys. B: Lasers Opt. 103, 441–450 (2011)

    Article  ADS  Google Scholar 

  6. V. Zeninari, V.A. Kapitanov, D. Courtois, Y.N. Ponomarev, Infrared Phys. Technol. 40, 1–23 (1999)

    Article  ADS  Google Scholar 

  7. S. Barbieri, J.-P. Pellaux, E. Studemann, D. Rosset, Rev. Sci. Instrum. 73, 2458–2461 (2002)

    Article  ADS  Google Scholar 

  8. M. Mattiello, M. Niklés, S. Schilt, L. Thénaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, J. Koeth, Spectrochim. Acta-Part A: Mol. Biomol. Spectros. 63, 952–958 (2006)

    Article  ADS  Google Scholar 

  9. J.M. Rey, M.W. Sigrist, Rev. Sci. Instrum. 78, 063104 (2007)

    Article  ADS  Google Scholar 

  10. S. Tan, W.-F. Liu, L.-J. Wang, J.-C. Zhang, L. Li, J.-Q. Liu, F.-Q. Liu, Z.-G. Wang, Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 32, 1251–1254 (2012)

    Google Scholar 

  11. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980), pp. 15–71

  12. G.Z. Angeli, A.M. Solym, A. Miklos, D.D. Bicanic, Anal. Chem. 64, 155–158 (1992)

    Article  Google Scholar 

  13. V. Zeninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Infrared Phys. Technol. 44, 253–261 (2003)

    Article  ADS  Google Scholar 

  14. R.S. Quimby, P.M. Selzer, W.M. Yen, Appl. Opt. 16, 2630–2632 (1977)

    Article  ADS  Google Scholar 

  15. N.C. Fernelius, Appl. Opt. 18, 1784–1787 (1979)

    Article  ADS  Google Scholar 

  16. W.A. McClenny, C.A. Bennett Jr., G.M. Russwurm, R. Richmond, Appl. Opt. 20, 650–653 (1981)

    Article  ADS  Google Scholar 

  17. O. Nordhaus, J. Pelzl, Appl. Phys. 25, 221–229 (1981)

    Article  ADS  Google Scholar 

  18. J. Blitz, Elements of Acoustics (Butterwoth, Oxford, 1964), pp. 64–90

  19. S. Bernegger, M.W. Sigrist, Infrared Phys. 30, 125–132 (1990)

    Article  Google Scholar 

  20. Y.-H. Pao, Optoacoustic Spectroscopy and Detection (Academic Press, San Diego, 1977), pp. 1–30

  21. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton University Press, New Jersey, 1968)

  22. P.M. Morse, Vibration and Sound (McGraw-Hill, New York, 1948), pp. 385–415

  23. D.A. Heaps, P.M. Pellegrino, Proc. SPIE 6218, 1–9 (2006)

    Google Scholar 

  24. B. Baumann, B. Kost, H. Groninga, M. Wolff, Proceedings of the COMSOL Multiphysics User’s Conference, 2005

  25. B. Baumann, B. Kost, H. Groninga, M. Wolff, Rev. Sci. Instrum. 77(4), 1–6 (2006)

    Google Scholar 

  26. B. Baumann, M. Wolff, B. Kost, H. Groninga, Proceedings of the COMSOL Users Conference (2006)

  27. B. Baumann, M. Wolff, B. Kost, H. Groninga, Appl. Opt. 46, 1120–1125 (2007)

    Article  ADS  Google Scholar 

  28. L.S. Rothman, I.E. Gordon, A. Barbe, D. Chris Benner et al., JQSRT 110, 533–572 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the ANR ECOTECH project #ANR-11-ECOT-004 called MIRIADE (2012–2014). Christophe Risser also acknowledges the Aerovia start-up (www.aerovia.fr) for his Ph.D funding by CIFRE contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Zéninari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvitte, B., Risser, C., Vallon, R. et al. Quantitative simulation of photoacoustic signals using finite element modelling software. Appl. Phys. B 111, 383–389 (2013). https://doi.org/10.1007/s00340-013-5344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5344-2

Keywords

Navigation