Skip to main content
Log in

Synthesis, structural, optical and electrical properties of metal nanoparticle–rare earth ion dispersed in polymer film

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV–Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15–30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz–1 MHz and in the temperature range 318–338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References:

  1. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  2. G. Schmid, Clusters and Colloids from Theory to Application (VCH, Weinheim, 1992)

    Google Scholar 

  3. D.L. Feldheim, C.A. Foss Jr, Metal Nanoparticles; Synthesis, Characterization, and Applications (Marcel Dekker, New York, 2002)

    Google Scholar 

  4. R.W. Siegel, E. Hu, M.C. Roco, Nanostructured Materials and Nanodevices (Kluwer, Dordrecht, 1999)

    Google Scholar 

  5. Y. Xia, N.J. Halas, MRS Bull. 30, 338 (2005)

    Article  Google Scholar 

  6. M.C. Danie, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  Google Scholar 

  7. R. Hei, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem. 12, 3783 (2002)

    Article  Google Scholar 

  8. A.E. Saunders, M.B. Sigman Jr, B.A. Korgel, J. Phys. Chem. B 108, 193 (2004)

    Article  Google Scholar 

  9. R.A. Ganeev, A.I. Ryasnyanskii, T. Usmanov, Quantum Electron. 31, 185 (2001)

    Article  ADS  Google Scholar 

  10. S.A. Maiera, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  11. V. Uskokovic, Curr Nanosci. 4, 119 (2008)

    Article  ADS  Google Scholar 

  12. G. Kaur, R.K. Verma, D.K. Rai, S.B. Rai, J. Lumin. 132, 1683 (2012)

    Article  Google Scholar 

  13. R.K. Verma, K. Kumar, S.B. Rai, Solid State Commun. 150, 1947 (2010)

    Article  ADS  Google Scholar 

  14. S.K. Singh, N.K. Giri, D.K. Rai, S.B. Rai, Solid State Sci. 12, 1480 (2010)

    Article  ADS  Google Scholar 

  15. T. M. DungDang, T. T. ThuLe, E. F.Blanc, M. C. Dang: Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 015009 (2011)

  16. C. Wu, B. P. Mosher, T. Zeng: Mater. Res. Soc. Symp. Proc. 879E Z6.3.1–6 (2005)

  17. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu, S. Deki, J. Mater. Chem. 10, 2548 (2000)

    Article  Google Scholar 

  18. T.N. Rostovshchikov, V.V. Smirnov, V.M. Kozhevin, D.A. Yavsin, M.A. Zabelin, I.N. Yassievich, S.A. Gurevich, Appl. Catal. A Gen. 296, 70 (2005)

    Article  Google Scholar 

  19. A. Quaranta, R. Ceccato, C. Menato, L. Pederiva, N. Capra, R.D. Maschio, J. Non-Cryst, Solids 671, 345 (2004)

    Google Scholar 

  20. W. Yu, H. Xie, L. Chen, Y. Li, C. Zhang, Nanoscale Res. Lett. 4, 465 (2009)

    Article  ADS  Google Scholar 

  21. M.S. Niasari, F. Davar, Mater. Lett. 63, 44 (2009)

    Google Scholar 

  22. M.S. Niasari, Z. Fereshteh, F. Davar, Polyhedron 28, 126 (2009)

    Article  Google Scholar 

  23. B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Thin Solid Films 515, 7706 (2007)

    Article  ADS  Google Scholar 

  24. R.M. Tilaki, A. Irajizad, S.M. Mahdavi, Appl. Phys. A 88, 415 (2007)

    Article  ADS  Google Scholar 

  25. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, T. Usmanov, Physica Status Solidi B, R5R7. 238, 268 (2003)

  26. R. Zhou, X. Wua, X. Hao, F. Zhou, H. Li, W. Rao, Nucl. Instrum. Methods Phys. Res. B 266, 599 (2008)

    Article  ADS  Google Scholar 

  27. J. Neddersen, G. Chumanov, T.M. Coton, Appl. Spec. 47, 1959 (1993)

    Article  ADS  Google Scholar 

  28. J. Lee, D.K. Kim, W. Kang, Bull. Korean Chem. Soc. 27, 1869 (2006)

    Article  ADS  Google Scholar 

  29. M.J. Belousoff, P. Ung, C.M. Forsyth, Y. Tor, L. Spiccia, B. Graham, J. Am. Chem. Soc. 131, 1106 (2009)

    Article  Google Scholar 

  30. J.-C.G. Bünzli, C. Piguet, Chem. Rev. 34, 1048 (2005)

    Article  Google Scholar 

  31. RSC, J.-C. G. Bünzli, Chem. Rev., 110, 2729 (2010)

  32. G. Liu, B. Jacquier, Spectroscopic properties of rare earth in optical materials (Tsinghua University Press, Germany, 2005)

    Google Scholar 

  33. G. Kaur, Y. Dwivedi, S.B. Rai, Mat. Chem. Phys. 130, 1352 (2011)

    Article  Google Scholar 

  34. G. Kaur, S.B. Rai, J. Phys. D Appl. Phys. 44, 425306 (2011)

    Article  ADS  Google Scholar 

  35. T. Inagaki, J. Chem Phys. 57, 6 (1972)

    Article  Google Scholar 

  36. K.P. Rice, E.J. Walker Jr, M.P. Stoykovich, A.E. Saunders, J. Phys. Chem. C 115, 1793 (2011)

    Article  Google Scholar 

  37. M. Saito, K. Yasukawa, T. Umeda, Y. Aoi, Opt. Mater. 30, 1201 (2008)

    Article  ADS  Google Scholar 

  38. T. Kano, M. Saito, M. Miyagi, Electron. Lett. 30, 736 (1994)

    Article  ADS  Google Scholar 

  39. G. Kaur, Y. Dwivedi, S.B. Rai, J. Fluoresc. 21, 423 (2011)

    Article  Google Scholar 

  40. S.R. Elliot, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  41. J. C. Giuntini, J. V. Janchetta, F. Henn., Solid State Ion. 28, 142 (1988)

  42. M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)

    Article  ADS  Google Scholar 

  43. D.P. Almond, A.R. West, Nature (Lond.) 306, 456 (1983)

    Article  ADS  Google Scholar 

  44. D.P. Almond, G.K. Dunkan, A.R. West, Solid State Ion. 8, 159 (1983)

    Article  Google Scholar 

  45. A.K. Jonsher, Nature (Lond.) 267, 673 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Alexander von Humboldt Foundation, Germany, for providing pulsed Nd:YAG laser. Authors would also like to acknowledge Prof. O.N. Srivastava, BHU Varanasi, for TEM measurements. One of the authors (G. Kaur) is grateful to CSIR, New Delhi, for the award of Senior Research Fellowship. B. Kumar would like to acknowledge UGC for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, B., Kaur, G., Singh, P. et al. Synthesis, structural, optical and electrical properties of metal nanoparticle–rare earth ion dispersed in polymer film. Appl. Phys. B 110, 345–351 (2013). https://doi.org/10.1007/s00340-012-5259-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5259-3

Keywords

Navigation