Skip to main content
Log in

Efficient upconversion of photoluminescence via two-photon absorption in bulk and nanorod ZnO

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Efficient upconversion of photoluminescence from donor-bound excitons is revealed in bulk and nanorod ZnO. Based on excitation power-dependent PL measurements performed with different energies of excitation photons, two-photon absorption (TPA) and two-step TPA (TS-TPA) processes are concluded to be responsible for the upconversion. The TS-TPA process is found to occur via a defect/impurity (or defects/impurities) with an energy level (or levels) lying within 1.14–1.56 eV from one of the band edges, without involving photon recycling. One of the possible defect candidates could be VZn. A sharp energy threshold, different from that for the corresponding one-photon absorption, is observed for the TPA process and is explained in terms of selection rules for the involved optical transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Due to a limited output power from a 661 nm diode laser, the UPL emission under this excitation could only be detected from the Cermet ZnO, i.e. in the sample which exhibits the highest PL intensity under one-photon excitation.

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H.J. Morkoc, Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  2. C. Klingshirn, Phys. Stat. Sol. (a) 244, 3027 (2007)

    Article  ADS  Google Scholar 

  3. S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, IEEE Trans. Electron Devices 54, 1040 (2007)

    Article  ADS  Google Scholar 

  4. A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)

  5. Y.C. Zhong, A.B. Djurišić, U.F. Hsu, K.S. Wong, G. Brauer, C.C. Ling, W.K. Chan, J. Phys. Chem. C 112, 16286 (2008)

    Article  Google Scholar 

  6. S.K. Lee, S.L. Chen, D. Hongxing, L. Sun, Z. Chen, W.M. Chen, I.A. Buyanova, Appl. Phys. Lett. 96, 083104 (2010)

    Article  ADS  Google Scholar 

  7. R. Prasanth, L.K. van Vugt, D.A.M. Vanmaekelbergh, H.C. Gerritsen, Appl. Phys. Lett. 88, 181501 (2006)

    Google Scholar 

  8. S.W. Chan, R. Barille, J.M. Nunzi, K.H. Tam, Y.H. Leung, W.K. Chan, A.B. Djurišić, Appl. Phys. B 84, 351 (2006)

    Article  ADS  Google Scholar 

  9. D.C. Dai, S.J. Xu, S.L. Shi, M.H. Xie, C.M. Chen, IEEE Photonics Technol. Lett. 18, 1533 (2006)

    Article  ADS  Google Scholar 

  10. Y.C. Zhong, K.S. Wong, A.B. Djurišic, Y.F. Hsu, Appl. Phys. B 97, 125 (2009)

    Article  ADS  Google Scholar 

  11. C.F. Zhang, Z.W. Dong, G.J. You, R.Y. Zhu, S.X. Qian, Appl. Phys. Lett. 89, 042117 (2006)

    Article  ADS  Google Scholar 

  12. W. Cao, W. Du, F. Su, G. Li, Appl. Phys. Lett. 89, 031902 (2006)

    Article  ADS  Google Scholar 

  13. S. Mani, J.I. Jang, J.B. Ketterson, Appl. Phys. Lett. 93, 041902 (2008)

    Article  ADS  Google Scholar 

  14. S.K. Das, M. Biswas, D. Byrne, M. Bock, E. McGlynn, M. Breusing, R. Grunwald, J. Appl. Phys. 108, 043107 (2010)

    Article  ADS  Google Scholar 

  15. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. Hahm, J. Liu, Z.L. Wang, J. Xu, Opt. Express 17, 7803 (2009)

    ADS  Google Scholar 

  16. B. Clerjaud, F. Gendron, C. Porte, Appl. Phys. Lett. 38, 212 (1981)

    Article  ADS  Google Scholar 

  17. P.P. Paskov, P.O. Holtz, B. Monemar, J.M. Garcia, W.V. Schoenfeld, P.M. Petroff, Appl. Phys. Lett. 77, 812 (2000)

    Article  ADS  Google Scholar 

  18. R. Hellmann, A. Euteneuer, S.G. Hense, J. Feldmann, P. Thomas, E.O. Göbel, D.R. Yakovlev, A. Wagg, G. Landwehr, Phys. Rev. B 51, 18053 (1995)

    Article  ADS  Google Scholar 

  19. M. Izadifard, J.P. Bergman, W.M. Chen, I.A. Buyanova, Y.G. Hong, C.W. Tu, J. Appl. Phys. 99, 073515 (2006)

    Article  ADS  Google Scholar 

  20. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Solidi B 241, 231 (2004)

    Article  ADS  Google Scholar 

  21. V.V. Travnikov, A. Freiberg, S.F. Savikhin, J. Lumin. 47, 107 (1990)

    Article  Google Scholar 

  22. V.A. Nikitenko, J. Appl. Spectrosc. 56, 783 (1994)

    Google Scholar 

  23. A. Janotti, C.G Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

  24. X.J. Wang, L.S. Vlasenko, S.J. Pearton, W.M. Chen, I.A. Buyanova, J. Phys. D Appl. Phys. 42, 175411 (2009)

    Article  ADS  Google Scholar 

  25. R. Laiho, L.S. Vlasenko, M.P. Vlasenko, J. Appl. Phys. 103, 123709 (2008)

    Article  ADS  Google Scholar 

  26. F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91, 205502 (2003)

    Article  ADS  Google Scholar 

  27. B. Monemar, P.P. Paskov, J.P. Bergman, G. Pozina, A.A. Toropov, T.V. Shubina, T. Malinauskas, A. Usui, Phys. Rev. B 82, 235202 (2010)

    Article  ADS  Google Scholar 

  28. S.L. Chen, W.M. Chen, I.A. Buyanova, Phys. Rev. B 83, 245212 (2011)

    Article  ADS  Google Scholar 

  29. R. Dingles, D. Fröhkich, B. Staginnus, W. Staude, Phys. Rev. Lett. 25, 922 (1970)

    Article  ADS  Google Scholar 

  30. W. Kaule, Solid State Commun. 9, 17 (1971)

    Article  ADS  Google Scholar 

  31. A. Mang, K. Reimann, St. Rubenacke, Solid State Commun. 94, 251 (1995)

  32. B.K. Meyer, J. Sann, S. Eisermann, S. Lautenschlaeger, M.R. Wagner, M. Kaiser, G. Callsen, J.S. Reparaz, A. Hoffmann, Phys. Rev. B 82, 115207 (2010)

    Article  ADS  Google Scholar 

  33. W.L. Lambrecht, A.V. Rodina, S. Limpijumnong, B. Segall, B.K. Meyer, Phys. Rev. B 65, 075207 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support by the Swedish Research Council (grant # 621-2010-3971) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Buyanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S.L., Stehr, J., Reddy, N.K. et al. Efficient upconversion of photoluminescence via two-photon absorption in bulk and nanorod ZnO. Appl. Phys. B 108, 919–924 (2012). https://doi.org/10.1007/s00340-012-5138-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5138-y

Keywords

Navigation