Skip to main content
Log in

Dynamic phase-contrast stereoscopy for microflow velocimetry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A nonlinear dynamic phase-contrast stereoscope has been developed for the measurement of all three velocity components of a microfluidic flow field. The stereoscope system captures simultaneously two images of different off-axis views of the same region of interest in a microflow, seeded with tracer particles. Two independent photorefractive two-beam coupling novelty filters, one in each stereoscope channel, are employed to enhance the contrast of tracer particle images. A subsequently applied particle tracking algorithm extracts the velocity information from the images, and in first experiments the axial velocity components could be determined with an error of less than 5%. Finally we report on the determination of the velocity field in a rectangular microchannel with a 170 μm high microstep with the dynamic phase-contrast stereoscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manz, N. Graber, H.M. Widmer, Sens. Actuators B 1, 244 (1990)

    Article  Google Scholar 

  2. O. Geschke, H. Klank, P. Tellman (eds.), Microsystem Engineering of Lab-on-a-Chip Devices (Wiley, New York, 2004)

    Google Scholar 

  3. G.M. Whitesides, Nature 442, 368 (2006)

    Article  ADS  Google Scholar 

  4. J. Santiago, S. Wereley, C. Meinhart, D. Beebe, R. Adrian, Exp. Fluids 25, 316 (1998)

    Article  Google Scholar 

  5. C.D. Meinhart, S.T. Wereley, J.G. Santiago, Exp. Fluids 27, 414 (1999)

    Article  Google Scholar 

  6. D. Sinton, Microfluid. Nanofluid. 1, 2 (2004)

    Article  Google Scholar 

  7. S. Jian, E. Malkiel, J. Katz, Appl. Opt. 42, 235 (2003)

    Article  ADS  Google Scholar 

  8. C. Yang, H. Chuang, Exp. Fluids 39, 385–396 (2005)

    Article  Google Scholar 

  9. B. Ovryn, Exp. Fluids 29, S175–184 (2000)

    Article  Google Scholar 

  10. J. Park, K. Kihm, Exp. Fluids 40, 491–499 (2006)

    Article  Google Scholar 

  11. S.D. Peterson, H.S. Chuang, S.T. Wereley, Meas. Sci. Technol. 19, 115406 (2008)

    Article  ADS  Google Scholar 

  12. M.R. Bown, J.M. MacInnes, R.W.K. Allen, W.B.J. Zimmerman, Meas. Sci. Technol. 17, 2175 (2006)

    Article  ADS  Google Scholar 

  13. R. Lindken, J. Westerweel, B. Wieneke, Exp. Fluids 41, 161 (2006)

    Article  Google Scholar 

  14. M.R. Bown, J.M. MacInnes, R.W.K. Allen, Exp. Fluids 42, 197 (2007)

    Article  Google Scholar 

  15. W.J. Parak, T. Pellegrino, C. Plank, Nanotechnology 16, R9 (2005)

    Article  ADS  Google Scholar 

  16. H. Petermeier, W. Kowalczyk, A. Delgado, C. Denz, F. Holtmann, Exp. Fluids 42, 611 (2007)

    Article  Google Scholar 

  17. Y. Sugii, S. Nishio, K. Okamoto, Physiol. Meas. 23, 403 (2002)

    Article  Google Scholar 

  18. D. Anderson, J. Feinberg, IEEE J. Quantum Electron. 25, 635 (1989)

    Article  ADS  Google Scholar 

  19. M. Sedlatschek, J. Trumpfheller, J. Hartmann, M. Müller, C. Denz, T. Tschudi, Appl. Phys. B 68, 1047 (1999)

    Article  ADS  Google Scholar 

  20. V.V. Krishnamachari, C. Denz, J. Opt. A: Pure Appl. Opt. 5, 239 (2003)

    Article  Google Scholar 

  21. V.V. Krishnamachari, C. Denz, Appl. Phys. B 79, 497 (2004)

    Article  Google Scholar 

  22. R.S. Cudney, R.M. Pierce, J. Feinberg, Nature 332, 424 (1988)

    Article  ADS  Google Scholar 

  23. M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, Opt. Mater. 4, 376 (1995)

    Article  Google Scholar 

  24. M. Woerdemann, F. Holtmann, C. Denz, J. Opt. A: Pure Appl. Opt. 11, 034010 (2009)

    Article  ADS  Google Scholar 

  25. M. Woerdemann, F. Holtmann, C. Denz, Appl. Phys. Lett. 93, 021108 (2008)

    Article  ADS  Google Scholar 

  26. F. Holtmann, M. Woerdemann, C. Denz, Nonlinear dynamic phase contrast microscopy for microflow analysis, in Imaging Measurement Methods for Flow Analysis (Springer, Berlin, 2009)

    Google Scholar 

  27. V.V. Krishnamachari, O. Grothe, H. Deitmar, C. Denz, Appl. Phys. Lett. 87, 071105 (2005)

    Article  ADS  Google Scholar 

  28. F. Holtmann, M. Eversloh, C. Denz, J. Opt. A: Pure Appl. Opt. 11, 034014 (2009)

    Article  ADS  Google Scholar 

  29. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993)

    Google Scholar 

  30. Y.G. Guezennec, R.S. Brodkey, N. Trigui, J.C. Kent, Exp. Fluids 17, 209 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Holtmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtmann, F., Oevermann, M. & Denz, C. Dynamic phase-contrast stereoscopy for microflow velocimetry. Appl. Phys. B 95, 633–636 (2009). https://doi.org/10.1007/s00340-009-3500-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3500-5

PACS

Navigation