Skip to main content

Advertisement

Log in

SPDM: light microscopy with single-molecule resolution at the nanoscale

Applied Physics B Aims and scope Submit manuscript

Abstract

Far-field fluorescence techniques based on the precise determination of object positions have the potential to circumvent the optical resolution limit of direct imaging given by diffraction theory. In order to use localization to obtain structural information far below the diffraction limit, the ‘point-like’ components of the structure have to be detected independently, even if their distance is lower than the conventional optical resolution limit. This goal can be achieved by exploiting various photo-physical properties of the fluorescence labeling (‘spectral signatures’). In first experiments, spectral precision distance microscopy/spectral position determination microscopy (SPDM) was limited to a relatively small number of components to be resolved within the observation volume. Recently, the introduction of photoconvertable molecules has dramatically increased the number of components which can be independently localized. Here, we present an extension of the SPDM concept, exploiting the novel spectral signature offered by reversible photobleaching of fluorescent proteins. In combination with spatially modulated illumination (SMI) microscopy, at the present stage, we have achieved an estimated effective optical resolution of approximately 20 nm in the lateral and 50 nm in the axial direction, or about 1/25th–1/10th of the exciting wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. T. Cremer, C. Cremer, Nat. Rev. Genet. 2, 292–301 (2001)

    Article  Google Scholar 

  2. E.A. Jares-Erijman, T.M. Jovin, Nat. Biotechnol. 21, 1387–1395 (2003)

    Article  Google Scholar 

  3. J. Braga, J.M.P. Desterro, M. Carmo-Fonseca, Mol. Biol. Cell 15, 4749–4760 (2004)

    Article  Google Scholar 

  4. C. Cremer, T. Cremer, Microsc. Acta 81, 31–44 (1978)

    Google Scholar 

  5. S.W. Hell, E.H.K. Stelzer, S. Lindek, C. Cremer, Opt. Lett. 19, 222–224 (1994)

    ADS  Google Scholar 

  6. P.E. Hänninen, S.W. Hell, J. Salo, E. Soini, C. Cremer, Appl. Phys. Lett. 66, 1698–1700 (1995)

    Article  ADS  Google Scholar 

  7. A. Egner, S. Jakobs, S.W. Hell, Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002)

    Article  ADS  Google Scholar 

  8. J. Bewersdorf, B.T. Bennett, K.L. Knight, Proc. Natl. Acad. USA 103, 18137–1814 (2006)

    Article  ADS  Google Scholar 

  9. D. Baddeley, C. Carl, C. Cremer, Appl. Opt. 45, 7056–7064 (2006)

    Article  ADS  Google Scholar 

  10. B. Albrecht, A. Schweitzer, A.V. Failla, P. Edelmann, C. Cremer, Appl. Opt. 41, 80–87 (2002)

    Article  ADS  Google Scholar 

  11. A.V. Failla, A. Cavallo, C. Cremer, Appl. Opt. 4, 6651–6659 (2002)

    Article  ADS  Google Scholar 

  12. A.V. Failla, B. Albrecht, U. Spoeri, A. Kroll, C. Cremer, Appl. Opt. 41, 7275–7283 (2002)

    Article  ADS  Google Scholar 

  13. D. Baddeley, C. Batram, Y. Weiland, C. Cremer, U. Birk, Nat. Protoc. 2, 2640–2646 (2007)

    Article  Google Scholar 

  14. R. Heintzmann, T. Jovin, C. Cremer, J. Opt. Soc. Am. A 19, 1599–1609 (2002)

    Article  ADS  Google Scholar 

  15. S. Martin, A.V. Failla, U. Spöri, C. Cremer, A. Pombo, Mol. Biol. Cell 15, 2449–2455 (2004)

    Article  Google Scholar 

  16. G. Hildenbrand, A. Rapp, U. Spoeri, Ch. Wagner, C. Cremer, M. Hausmann, Biophys. J. 88, 4312–4318 (2005)

    Article  Google Scholar 

  17. H. Mathee, D. Baddeley, C. Wotzlaw, J. Fandrey, C. Cremer, U. Birk, Histochem. Cell Biol. 125, 75–82 (2006)

    Article  Google Scholar 

  18. G. Donnert, J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S.W. Hell, Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006)

    Article  ADS  Google Scholar 

  19. S.W. Hell, I. Wichmann, Opt. Lett. 19, 780–782 (1994)

    ADS  Google Scholar 

  20. M.A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S.W. Hell, Microsc. Res. Tech. 29, 17262791 (2007)

    Google Scholar 

  21. H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, J. Microsc. 189, 118–136 (1998)

    Article  Google Scholar 

  22. A.M. van Oijen, J. Köhler, J. Schmidt, G.J. Brakenhoff, Chem. Phys. Lett. 292, 183–187 (1998)

    Article  Google Scholar 

  23. T.D. Lacoste, X. Michalet, F. Pinaud, D.S. Chemla, A.P. Alivistatos, S. Weiss, Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000)

    Article  ADS  Google Scholar 

  24. M. Schmidt, M. Nagorni, S.W. Hell, Rev. Sci. Instrum. 71, 2742–2745 (2000)

    Article  ADS  Google Scholar 

  25. C. Cremer, A.V. Failla, B. Albrecht, US Patent 7,298,461 B2, filed 9 Oct. 2001

  26. M. Heilemann, D.P. Herten, R. Heintzmann, C. Cremer, C. Müller, Ph. Tinnefeld, K.D. Weston, J. Wolfrum, Anal. Chem. 74, 3511–3517 (2002)

    Article  Google Scholar 

  27. C. Cremer, M. Hausmann, J. Bradl, B. Rinke, German Patent Application No. 196.54. 824.1/DE, filed 23 Dec. 23 1996; European Patent EP 1997953660, 8 Apr. 1999; Japanese Patent JP 1998528237, 23 June 1999; United States Patent US 09331644, 25 Aug. 1999

  28. C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, in Handbook of Computer Vision and Applications, vol. 3 ed. by B. Jähne, H. Haußecker, P. Geißler (Academic Press, San Diego, 1999), pp. 839—885

    Google Scholar 

  29. A. Esa, P. Edelmann, L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, J. Microsc. 199, 96–105 (2000)

    Article  Google Scholar 

  30. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwassser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwart, H.F. Hess, Sciencexpress 313, 1642–1645 (2006)

    ADS  Google Scholar 

  31. S.T. Hess, T.P.K. Girirajan, M.D. Mason, Biophys. J. 91, 4258–4272 (2006)

    Article  ADS  Google Scholar 

  32. M. Bates, B. Huang, G.T. Dempsey, X. Zhuang, Science 317, 1749–1753 (2007)

    Article  ADS  Google Scholar 

  33. C. Geisler, A. Schönle, C. von Middendorf, H. Bock, C. Eggeling, A. Egner, S.W. Hell, Appl. Phys. A 88, 223–226 (2007)

    Article  ADS  Google Scholar 

  34. B. Huang, W. Wang, M. Bates, X. Zhuang, Science 319, 810–813 (2008)

    Article  ADS  Google Scholar 

  35. A.K. Lidke, B. Rieger, T.M. Jovin, R. Heintzmann, Opt. Express 13, 7052–7062 (2005)

    Article  ADS  Google Scholar 

  36. A. Esa, A.E. Coleman, P. Edelmann, S. Silva, C. Cremer, S. Janz, Cancer Genet. Cytogenet. 127, 168–173 (2001)

    Article  Google Scholar 

  37. J. Rauch, T.A. Knoch, I. Solovei, K. Teller, S. Stein, K. Buiting, B. Horsthemke, J. Langowski, T. Cremer, M. Hausmann, C. Cremer, Differentiation 76, 66–82 (2008)

    Google Scholar 

  38. T.B. McAnaney, W. Zeng, C.F.E. Doe, N. Bhanji, S. Wakelin, D.S. Pearson, P. Abbyad, X. Shi, S.G. Boxer, C.R. Bagshaw, Biochemistry 44, 5510–5524 (2005)

    Article  Google Scholar 

  39. C. Eggeling, J. Widengren, R. Rigler, C.A.M. Seidel, Anal. Chem. 70, 2651–2659 (1998)

    Article  Google Scholar 

  40. J. Lippincott-Schwartz, N. Altan-Bonnet, G.H. Patterson, Nat. Biotechnol. 20, 87–90 (2002)

    Article  Google Scholar 

  41. R.Y. Tsien, Ann. Rev. Biochem. 67, 509–544 (1998)

    Article  Google Scholar 

  42. T. Nagai, K. Ibata, E.S. Park, M. Kubota, K. Mikoshiba, A. Miyawaki, Genetics 122, 19–27 (1989)

    Google Scholar 

  43. M. Schmidt, M. Nagorni, S.W. Hell, Rev. Sci. Instrum. 71, 2742–2745 (2000)

    Article  ADS  Google Scholar 

  44. J. Enderlein, E. Toprak, P.R. Selvin, Opt. Express 14, 8111–8120 (2006)

    Article  ADS  Google Scholar 

  45. F. Aguet, D. Van De Ville, M. Unser, Opt. Express 13, 10503–10522 (2005)

    Article  ADS  Google Scholar 

  46. M.F. Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, J. Bewersdorf, Nat. Methods (2008)

  47. J. Reymann, D. Baddeley, P. Lemmer, W. Stadter, T. Jegou, K. Rippe, C. Cremer, U. Birk, Chromosome Res. 16, 367–382 (2008)

    Article  Google Scholar 

  48. P. Edelmann, C. Cremer, Proc. SPIE 3921, 313–320 (2000)

    Article  ADS  Google Scholar 

  49. S. Fenz, S.H. Mathee, G. Kreth, D. Baddeley, Y. Weiland, J. Schwarz-Finsterle, C.G. Cremer, U.J. Birk, Proc. SPIE 6630, 663002-1 (2007)

    Google Scholar 

  50. B. Albrecht, A.V. Failla, R. Heintzmann, C. Cremer, J. Biomed. Opt. 6, 292–299 (2001)

    Article  ADS  Google Scholar 

  51. D.H. Burns, J.B. Callis, G.D. Christian, E.R. Davidson, Appl. Opt. 24, 154–161 (1985)

    Article  ADS  Google Scholar 

  52. E. Betzig, Opt. Lett. 20, 237–239 (1995)

    ADS  Google Scholar 

  53. R. Heintzmann, C. Cremer, Proc. SPIE 3658, 185–195 (1999)

    Article  Google Scholar 

  54. J.T. Frohn, H.F. Knapp, A. Stemmer, Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000)

    Article  ADS  Google Scholar 

  55. M. Gustafsson, L. Shao, P.M. Carlton, C.J.R. Wang, I.N. Golubovskaya, W.Z. Cande, D.A. Agard, J.W. Sedat, Biophys. J., 13 March (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmer, P., Gunkel, M., Baddeley, D. et al. SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl. Phys. B 93, 1–12 (2008). https://doi.org/10.1007/s00340-008-3152-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3152-x

PACS

Navigation