Skip to main content
Log in

Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Metal-coated dielectric tetrahedral tips (T-tip) have long been considered to be interesting structures for the confinement of light to nanoscopic dimensions, and in particular as probes for scanning near-field optical microscopy. Numerical investigations using the Finite-Difference Time-Domain (FDTD) method are used to explore the operation of a T-tip in extraction mode. A dipole source in close proximity to the apex excites the tip, revealing the field evolution in the tip, the resulting edge and face modes on the metal-coated surfaces, and the coupling from these modes into highly directional radiation into the dielectric interior of the tip. These results are the starting point for illumination-mode numerical investigations by a Volume Integral equation method, which compute the field distribution that develops in a T-tip when a Gaussian beam is incident into the tip, and which show that a highly confined electric field is produced at the apex of the tip. The process of light confinement can be considered as a superfocussing effect, because the intensity of the tightly confined light spot is significantly higher than that of the focussed yet much wider incident beam. The mechanism of superfocussing can be considered as a dimensional reduction of surface plasmon modes, where an edge plasmon is the most important link between the waveguide-modes inside the tip and the confined near field at the apex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yatsui, M. Kourogi, M. Ohtsu, Plasmon waveguide for optical far/near-field conversion. Appl. Phys. Lett. 79, 4583–4586 (2001)

    Article  ADS  Google Scholar 

  2. U.C. Fischer, The tetrahedral tip as a probe for scanning near-field optical microscopy, in Near-Field Optics, ed. by D.W. Pohl, D. Courjon. NATO ASI Series E, vol. 242 (Kluwer Academic, Dordrecht, 1993), pp. 255–262

    Google Scholar 

  3. U.C. Fischer, J. Koglin, H. Fuchs, The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution. J. Microsc. 176, 231–237 (1994)

    Google Scholar 

  4. U.C. Fischer, A. Dereux, J.-C. Weeber, Controlling light confinement by excitation of localized surface plasmons. Top. Appl. Phys. 81, 49–69 (2001)

    Article  ADS  Google Scholar 

  5. H.-J. Maas, A. Naber, H. Fuchs, U.C. Fischer, J.C. Weeber, A. Dereux, Imaging of photonic nanopatterns by scanning near-field optical microscopy. Opt. Soc. Am. B 19, 1295–1300 (2002)

    Article  ADS  Google Scholar 

  6. H.-J. Maas, J. Heimel, H. Fuchs, U.C. Fischer, J.C. Weeber, A. Dereux, Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50–100 nm by scanning near-field optical microscopy. J. Microsc. 209, 241–248 (2003)

    MathSciNet  Google Scholar 

  7. J. Heimel, U.C. Fischer, H. Fuchs, SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter. J. Microsc. 202, 53–59 (2001)

    Article  MathSciNet  Google Scholar 

  8. U.C. Fischer, J. Heimel, H.-J. Maas, H. Fuchs, J.C. Weeber, A. Dereux, Super-resolution scanning near-field optical microscopy, in Optical Nanotechnologies—the Manipulation of Surface and Local Plasmons, ed. by J. Tominaga, D.P. Tsai. Topics in Applied Physics, vol. 88 (Springer, Berlin, 2003), pp. 141–151

    Google Scholar 

  9. E.G. Bortchagovsky, J. Heimel, H. Fuchs, U.C. Fischer, Dual wavelength snom imaging of monolayers of j-aggregated dye molecules. J. Korean Phys. Soc. 47, S48–S55 (2005)

    Google Scholar 

  10. S. Klein, J. Reichert, H. Fuchs, U.C. Fischer, Near-field Raman spectroscopy using a tetrahedral snom tip, in Proc. of SPIE, vol. 6195 61951F (1–7), 2006

  11. E.G. Bortchagovsky, S. Klein, H. Fuchs, U.C. Fischer, Surface plasmon mediated tip enhanced Raman scattering. Oral contribution to the XXI International Conference on Raman Spectroscopy ICORS, 17–22 August 2008. Uxbridge, West London, UK

  12. G. Veronis, S. Fan, Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005)

    Article  ADS  Google Scholar 

  13. I.V. Novikov, A.A. Maradudin, Channel polaritons. Phys. Rev. B 66, 035403 (2002)

    Article  ADS  Google Scholar 

  14. D.K. Gramotnev, D.F.P. Pile, Single mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl. Phys. Lett. 86, 6323–6325 (2006)

    Google Scholar 

  15. S. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–510 (2006)

    Article  ADS  Google Scholar 

  16. D.F.P. Pile, T. Oawa, D.K. Gamotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 061106 (2005)

    Article  ADS  Google Scholar 

  17. E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martin Moreno, F.J. Garcia-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100, 023901 (2008)

    Article  ADS  Google Scholar 

  18. K. Tanaka, M. Tanaka, Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82(8) (2003)

  19. A. Bouhelier, J. Renger, M.R. Beversluis, L. Novotny, Plasmon—coupled tip enhanced near-field microscopy. J. Microsc. 210, 220–224 (2002)

    Article  MathSciNet  Google Scholar 

  20. F. Keilmann, Surface polariton propagation for scanning near-field microscopy. J. Microsc. 194, 567 (1999)

    Article  Google Scholar 

  21. K. Li, M.I. Stockman, D.J. Bergman, Self similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 2274021 (2003)

    Google Scholar 

  22. A.J. Babadjanyan, N.L. Margaryan, Kh.V. Nerkararyan, Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87(8), 3785–3788 (2000)

    Article  ADS  Google Scholar 

  23. M.I. Stockman, Nanofocussing of optical energy in tapered plasmonic waveguides. Phys. Rev Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  24. Kh.V. Nerkarayan, Superfocussing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997)

    Article  ADS  Google Scholar 

  25. D.F.P. Pile, D.K. Gramotnev, Adiabatic and non adiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006)

    Article  ADS  Google Scholar 

  26. D.K. Gramotnev, Adiabatic nanofocussing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 98, 104302 (2005)

    Article  ADS  Google Scholar 

  27. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)

    Google Scholar 

  28. D.A. Christensen, Analysis of near-field tip patterns including object interaction using finite-difference time-domain calculations. Ultramicroscopy 57(2–3), 189–195 (1995)

    Article  Google Scholar 

  29. J.L. Kann, T.D. Milster, F.F. Froehlich, R.W. Ziolkowski, J.B. Judkins, Linear behavior of a near-field optical-scanning system. J. Opt. Soc. Am. A 12(8), 1677–1682 (1995)

    ADS  Google Scholar 

  30. A. Gara, M.A. Blumrich, D. Chen, G.L.T. Chiu, P. Coteus, M.E. Giampapa, R.A. Haring, P. Heidelberger, D. Hoenicke, G.V. Kopcsay, T.A. Liebsch, M. Ohmacht, B.D. Steinmacher-Burow, T. Takken, P. Vranas, Overview of the Blue Gene/L system architecture. IBM J. Res. Dev. 49(2–3), 195–212 (2005)

    Article  Google Scholar 

  31. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  32. J.A. Roden, S.D. Gedney, Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrary media. Microw. Opt. Technol. Lett. 27(5), 334–339 (2000)

    Article  Google Scholar 

  33. P. Zwamborn, P.M. van den Berg, The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems. IEEE Trans. MTT 40, 1757–1766 (1992)

    Article  Google Scholar 

  34. K. Tanaka, M. Tanaka, T. Sugiyama, Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguide. Opt. Express 13(1), 256–266 (2005)

    Article  ADS  Google Scholar 

  35. G.S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  36. D.E. Chang, A.S. Soerensen, P.R. Hemmer, M.D. Lukin, Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  37. D.E. Chang, A.S. Soerensen, P.R. Hemmer, M.D. Lukin, Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035402 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Burr, G.W., Grosjean, T. et al. Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes. Appl. Phys. B 93, 257–266 (2008). https://doi.org/10.1007/s00340-008-3147-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3147-7

PACS

Navigation