Skip to main content
Log in

Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry

  • Rapid communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Multi-line NO-LIF temperature imaging was applied to measure two-dimensional gas-temperature fields in a low-pressure, premixed flat-flame nano-particle generator during nano-particles synthesis. It was the first time that this calibration-free technique was applied in a low-pressure combustion system. The laser fluence was limited to 4 kW/cm2 in order to avoid saturation of the LIF signal, which influences the temperature results. While minimizing the elastically scattered light, the efficiency of the LIF detection system improved. This enables measurements with low tracer concentrations that do not influence the nano-particle generation process or the flame chemistry. An optimized scan range for excitation spectra was applied to measure flame temperatures between 600 and 1500 K in a 175×50 mm2 field with an accuracy of ±2%. It was found that the TiO2 nano-particle generation process does not influence the flame temperature under typical operating conditions. Pressure effects on the temperature distribution were investigated. The data is required for the simulation of nano-particle formation based on kinetic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Simanzhenkov, P. Ifeacho, H. Wiggers, J. Knipping, P. Roth, J. Nanosci. Nanotechnol. 4, 157 (2004)

    Article  Google Scholar 

  2. M. Tamura, J. Luque, J.E. Harrington, P.A. Berg, G.P. Smith, J.B. Jeffries, D.R. Crosley, Appl. Phys. B 66, 503 (1998)

    Article  ADS  Google Scholar 

  3. W.G. Bessler, F. Hildenbrand, C. Schulz, Appl. Opt. 40, 748 (2001)

    ADS  Google Scholar 

  4. W.G. Bessler, C. Schulz, Appl. Phys. B 78, 519 (2004)

    Article  ADS  Google Scholar 

  5. R.W. Dibble, R.E. Hollenbach, Proc. Combust. Inst. 18, 1489 (1981)

    Google Scholar 

  6. D. Hoffman, K.-U. Münch, A. Leipertz, Opt. Lett. 21, 525 (1996)

    Article  ADS  Google Scholar 

  7. K. Kohse-Höinghaus, J.B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, New York, 2002)

    Google Scholar 

  8. F. Beyrau, A. Bräuer, T. Seeger, A. Leipertz, Opt. Lett. 29, 247 (2003)

    Article  ADS  Google Scholar 

  9. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  10. A.O. Vyrodow, J. Heinze, M. Dillmann, U.E. Meier, W. Stricker, Appl. Phys. B 61, 409 (1995)

    Article  ADS  Google Scholar 

  11. T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, R.K. Hanson, Appl. Opt. 44, 6718 (2005)

    Article  ADS  Google Scholar 

  12. H. Kronemayer, W.G. Bessler, C. Schulz, Appl. Phys. B 81, 1071 (2005)

    Article  ADS  Google Scholar 

  13. I. Düwel, H.-W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, J. Wolfrum, Proc. Combust. Inst. 31, 2247 (2007)

    Article  Google Scholar 

  14. W.G. Bessler, C. Schulz, V. Sick, J.W. Daily, A versatile modeling tool for nitric oxide LIF spectra (http://www.lifsim.com) (3rd Joint meeting of the US sections of The Combustion Institute, Chicago, 2003, PI1)

  15. J.W. Daily, W.G. Bessler, C. Schulz, V. Sick, T.B. Settersten, AIAA 43 (2005)

  16. D. Lindackers, M.G.D. Strecker, P. Roth, C. Janzen, S.E. Pratsinsis, Combust. Sci. Technol. 123, 287 (1997)

    Article  Google Scholar 

  17. C. Janzen, P. Roth, Combust. Flame 125, 1150 (2001)

    Article  Google Scholar 

  18. G.T. Linteris, V.R. Katta, F. Takahashi, Combust. Flame 138, 78 (2004)

    Article  Google Scholar 

  19. A. Kowalik, P. Ifeacho, H. Wiggers, C. Schulz, P. Roth, TiO2 nanoparticle formation in a premixed flame and a plasma reactor, Comparison Between Experiment and Numerical Simulation (European Combustion Meeting (ECM), Chania, Greece, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kronemayer.

Additional information

PACS

07.20.Dt; 42.62.Fi; 61.46.Df

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronemayer, H., Ifeacho, P., Hecht, C. et al. Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry. Appl. Phys. B 88, 373–377 (2007). https://doi.org/10.1007/s00340-007-2721-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2721-8

Keywords

Navigation