Abstract
An original time resolved cathodoluminescence set up has been used to investigate the optical properties and the carrier transport in quantum structures located in InGaAs/AlGaAs tetrahedral pyramids. An InGaAs quantum dot formed just below the top of the pyramid is connected to four types of low-dimensional barriers: InGaAs quantum wires on the edges of the pyramid, InGaAs quantum wells on the (111)A facets and segregated AlGaAs vertical quantum wire and AlGaAs vertical quantum wells formed at the centre and at the pyramid edges. Experiments were performed at a temperature of 92 K, an accelerating voltage of 10 kV and a beam probe current of 10 pA. The cathodoluminescence spectrum shows five luminescence peaks. Rise and decay times for the different emission wavelengths provide a clear confirmation of the peak attribution (previously done with other techniques) to the different nanostructures grown in a pyramid. Moreover, experimental results suggest a scenario where carriers diffuse from the lateral quantum structures towards the central structures (the InGaAs quantum dot and the segregated AlGaAs vertical quantum wire) via the InGaAs quantum wires on the edges of the pyramid. According to this hypothesis, we have modeled the carrier diffusion along these quantum wires. An ambipolar carrier mobility of 1400 cm2/V s allows to obtain a good fit to all temporal dependences.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
D. Bimberg, Quantum Dot Heterostructures (1st ed., Wiley, 1999)
A. Gustafsson, M.E. Pistol, L. Montelius, L. Samuelson, J. Appl. Phys. 84, 1715 (1998)
J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996)
A. Hartmann, Y. Ducommun, K. Leifer, E. Kapon, J. Phys.: Condens. Matter 11, 5901 (1999)
M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M.H. Baier, E. Kapon, B. Deveaud, J.D. Ganiere, Nature 438, 479 (2005)
M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, F. Fuzesi, D. Martin, B. Deveaud, J.D. Ganiere, unpublished
M. Merano, S. Collin, P. Renucci, M. Gatri, S. Sonderegger, A. Crottini, J.D. Ganiere, B. Deveaud, Rev. Sci. Instrum. 76, 085108 (2005)
E. Pelucchi, M. Baier, Y. Ducommun, S. Watanabe, E. Kapon, Phys. Stat. Solidi B 238, 233 (2003)
A. Hartmann, L. Loubies, F. Reinhardt, E. Kapon, Appl. Phys. Lett. 71, 1314 (1997)
G. Biasiol, E. Kapon, Phys. Rev. Lett. 81, 2962 (1998)
Y. Ducommun, Semiconductor Quantum Dots Grown in Inverted Pyramids, PhD thesis, EPFL (2001)
E. Kapon, E. Pelucchi, S. Watanabe, A. Malko, M. Baier, K. Leifer, B. Dwir, F. Michelini, M. Dupertuis, Physica E 25, 288 (2004)
K. Leifer, A. Hartmann, Y. Ducommun, E. Kapon, Appl. Phys. Lett. 77, 3923 (2000)
B. Deveaud, F. Clerot, A. Regreny, K. Fujiwara, K. Mitsunaga, J. Ohta, Appl. Phys. Lett. 55, 2646 (1989)
L. Reimer, Scanning Electron Microscope (1st ed., Springer, 1985)
D.Y. Oberli, M.A. Dupertuis, F. Reinhardt, E. Kapon, Phys. Rev. B 59, 2910 (1999)
F. Reif, Statistical and Thermal Physics (McGraw-Hill, 1985)
B. Deveaud, A. Chomette, B. Lambert, A. Regreny, R. Romestain, P. Edel, Solid State Commun. 57, 885 (1986)
A. Chomette, B. Deveaud, J.Y. Emery, A. Regreny, B. Lambert, Solid State Commun. 54, 75 (1985)
V. Emiliani, F. Intonti, C. Lienau, T. Elsaesser, R. Notzel, K.H. Ploog, Phys. Rev. B 64, 155316 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
PACS
78.67.-n
Rights and permissions
About this article
Cite this article
Merano, M., Sonderegger, S., Crottini, A. et al. Time-resolved cathodoluminescence of InGaAs/AlGaAs tetrahedral pyramidal quantum structures. Appl. Phys. B 84, 343–350 (2006). https://doi.org/10.1007/s00340-006-2290-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-006-2290-2