Skip to main content
Log in

Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Custom modes at a wavelength of 1064 nm were generated with a deformable mirror. The required surface deformations of the adaptive mirror were calculated with the Collins integral written in a matrix formalism. The appropriate size and shape of the actuators as well as the needed stroke were determined to ensure that the surface of the controllable mirror matches the phase front of the custom modes. A semipassive bimorph adaptive mirror with five concentric ring-shaped actuators and one defocus actuator was manufactured and characterised. The surface deformation was modelled with the response functions of the adaptive mirror in terms of an expansion with Zernike polynomials. In the experiments the Nd:YAG laser crystal was quasi-CW pumped to avoid thermally induced distortions of the phase front. The adaptive mirror allows to switch between a super-Gaussian mode, a doughnut mode, a Hermite-Gaussian fundamental beam, multi-mode operation or no oscillation in real time during laser operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hudgson N, Weber H (1997) Optical Resonators. Springer, London

    Google Scholar 

  2. A.E. Siegman, New developments in laser resonators, in: Laser resonators, vol 1224 (Proc. Soc. Photo-Opt. Instrum. Eng. 1990), pp 2–14

  3. Bélanger P (1991) Beam propagation and the ABCD ray matrices. Opt. Lett. 16:196

    ADS  Google Scholar 

  4. Paré C, Bélanger P (1992) Beam propagation in a linear or nonlinear lens-like medium using the ABCD ray matrices: the method of moments. Opt. Quantum Electron. 24:1051

    Article  Google Scholar 

  5. W. Bloehs F Dausinger, Shaping systems for hardening with high-power Nd:YAG-lasers, in: Proceedings of the 6th European Conference on Laser Treatment of Materials (ECLAT ’96, Stuttgart 1996)

  6. Craxton R (1981) High efficiency frequency tripling schemes for high-power Nd:glass lasers. IEEE J. Quantum Electron. QE-17:1771

    Article  ADS  Google Scholar 

  7. Siegman A (1986) Lasers. University Science Books, Mill Valley, CA

    Google Scholar 

  8. Bélanger P, Paré C (1991) Optical resonators using graded-phase mirrors. Opt. Lett. 16:1057

    Article  ADS  Google Scholar 

  9. Paré C, Bélanger P (1994) Custom laser resonators using graded-phase mirrors: Circular geometry. IEEE J. Quantum Electron. 30:1141

    Article  ADS  Google Scholar 

  10. Napartovich A, Elkin N, Troschieva V, Vysotsky D, Leger J (1999) Simplified intracavity phase plates for increasing laser-mode discrimination. Appl. Opt. 38:3025

    Article  ADS  Google Scholar 

  11. Leger J, Chen D, Wang Z (1994) Diffractive optical element for mode shaping of a Nd:YAG laser. Opt. Lett. 19:108

    ADS  Google Scholar 

  12. Bélanger P, Lachance R, Paré C (1992) Super-gaussian output from a CO2 laser by using a graded-phase mirror resonator. Opt. Lett. 17:739

    ADS  Google Scholar 

  13. van Neste R, Paré C, Lachance R, Bélanger P (1994) Graded-phase mirror resonator with a super-gaussian output in a cw-CO2 laser. IEEE J. Quantum Electron. QE-30:2663

    Article  ADS  Google Scholar 

  14. Gerber M, Graf T (2004) Generation of super-gaussian modes in Nd:YAG lasers with a graded-phase mirror. IEEE J. Quantum Electron. QE-40:1

    Google Scholar 

  15. Wattellier B, Fuchs J, Zou J-P, Chanteloup J-C, Bandulet H, Michel P, Labaune C, Depierreux S, Kudryashov A, Aleksandrov A (2003) Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma. J. Opt. Soc. Am. B 20:1632

    Article  ADS  Google Scholar 

  16. A. Kudryashov T Cherezova L Kaptsov, Adaptive optical system for control of the cw technological YAG:Nd3+laserbeamparameters, in: High-power gas and solid state lasers, vol 2206 (Proc. SPIE, Europto Series 1994), pp 574–576

  17. Cherezova T, Kaptsov L, Kudryashov A (1996) Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror. Appl. Opt. 35:2554

    ADS  Google Scholar 

  18. Lubeigt W, Valentine G, Girkin J, Bente E, Burns D (2002) Active transverse mode control and optimisation of an all-solid-state laser using an intracavity adaptive-optic mirror. Opt. Express 10:550

    ADS  Google Scholar 

  19. U. Wittrock, I. Buske, H. Heuck() Adaptive aberration control in laser amplifiers and laser resonators, in: Laser Resonators and Beam Control VI, vol 4969 (Proc. SPIE 2003), pp 122–136

  20. Gonté F, Courteville A, Dändliker R (2002) Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror. Opt. Eng. 41:1073

    Article  ADS  Google Scholar 

  21. Liang J, Williams D, Miller D (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14:2884

    Article  ADS  Google Scholar 

  22. Cherezova T, Chesnokov S, Kaptsov L, Samarkin V, Kudryashov A (2001) Active laser resonator performance: formation of a specified intensity output. Appl. Opt. 40:6026

    Article  ADS  Google Scholar 

  23. Leger J, Chen D, Mowry G (1995) Design and performance of diffractive optics for custom laser resonators. Appl. Opt. 34:2498

    ADS  Google Scholar 

  24. Makki S, Leger J (2001) Mode shaping of a graded-reflectivity mirror unstable resonator with an intracavity phase element. IEEE J. Quantum Electron. QE-37:80

    Article  ADS  Google Scholar 

  25. Kudryashov A, Shmalhausen V (1996) Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications. Opt. Eng. 35:3064

    Article  ADS  Google Scholar 

  26. M. Born, E. Wolf, Principles of optics (Cambridge University Press 1999)

  27. Wang J, Silva D (1980) Wave-front interpretation with zernike polynomials. Appl. Opt. 19:1510

    ADS  Google Scholar 

  28. Noll RJ (1976) Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66:207

    ADS  Google Scholar 

  29. Weber R, Graf T, Weber H (2000) Self-adjusting compensating thermal lens to balance the thermally induced lens in solid-state lasers. IEEE J. Quantum Electron. QE-36:757

    Article  ADS  Google Scholar 

  30. Wyss E, Roth M, Graf T, Weber H (2002) Thermooptical compensation methods for high-power lasers. IEEE J. Quantum Electron. QE-38:1620

    Article  ADS  Google Scholar 

  31. Michel D, Graf T, Glur H, Luethy W, Weber H (2004) Thermo-optically driven adaptive mirror for laser applications. Appl. Phys. B 77:721

    Article  ADS  Google Scholar 

  32. Reinert F, Graf T, Luethy W, Weber H (2004) Optically controlled adaptive mirror. Laser Phys. Lett. 1:551

    Article  Google Scholar 

  33. E. Wyss, T. Graf, Verfahren, Anordnung und Beeinflussungseinheit fuer die Anordnung zur Veraenderung einer Wellenfront eines optischen Strahls, EU Patent 03 405 128.4, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gerber.

Additional information

PACS

42.60.Jf; 42.60.Da; 42.60.By

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, M., Graf, T. & Kudryashov, A. Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror. Appl. Phys. B 83, 43–50 (2006). https://doi.org/10.1007/s00340-005-2068-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2068-y

Keywords

Navigation