Skip to main content
Log in

The Rydberg matter laser: excitation, delays and mode effects in the laser cavity medium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Temporal and temperature effects are studied in Rydberg matter (RM) formed from K atoms and N2 molecules as the active medium in a cavity. The function of this setup as a laser was recently described. Temperature-variation studies show that the photons re-exciting the RM clusters usually have a longer wavelength than the photons emitted in the stimulated emission process in the cavity. The deficit is probably covered by background photons. Very long time constants observed after emitter temperature changes indicate that long-wavelength photon energy is accumulated in the RM clusters. Long-wavelength modes are located farther from the RM emitter. The modal structure can be TEM01 or TEM00, as observed clearly by the spatial structure in rapid pulsing experiments. The in-cavity chopped beam signal is delayed by approximately 50 μs. The initial growth rate of the signal during chopping is temperature dependent. Tailing is also observed by chopping, but rapid pulsing of the beam with a spinning mirror does not show any delay of the start of the lasing. The conclusion is that delays exist in the stimulated emission process. The broad intense band appearing at 11 000 nm is shown to be formed partly by light in the range 3500–5000 nm, probably by standing wave interaction at the grating surface (grating bands).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Badiei, L. Holmlid, Chem. Phys. Lett. 376, 812 (2003)

    Article  Google Scholar 

  2. L. Holmlid, J. Phys. B: At. Mol. Opt. Phys. 37, 357 (2004)

    Article  Google Scholar 

  3. V.I. Yarygin, V.N. Sidel’nikov, I.I. Kasikov, V.S. Mironov, S.M. Tulin, JETP Lett. 77, 280 (2003)

    Article  Google Scholar 

  4. A. Kotarba, A. Baranski, S. Hodorowicz, J. Sokolowski, A. Szytula, L. Holmlid, Catal. Lett. 67, 129 (2000)

    Article  Google Scholar 

  5. A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, G. Djega-Mariadassou, Stud. Surf. Sci. Catal. A 130, 485 (2000)

    Google Scholar 

  6. A. Kotarba, J. Dmytrzyk, U. Narkiewicz, A. Baranski, React. Kinet. Catal. Lett. 74, 143 (2001)

    Article  Google Scholar 

  7. L. Holmlid, Phys. Rev. A 63, 013817 (2001)

    Article  Google Scholar 

  8. J.Q. Liang, M. Katsuragawa, F.L. Kien, K. Hakuta, Phys. Rev. A 65, 031801 (2002)

    Article  Google Scholar 

  9. R. Svensson, L. Holmlid, Phys. Rev. Lett. 83, 1739 (1999)

    Article  Google Scholar 

  10. L. Holmlid, Astrophys. J. 548, L249 (2001)

    Article  Google Scholar 

  11. L. Holmlid, J. Phys. Chem. A 102, 10636 (1998)

    Article  Google Scholar 

  12. J. Wang, K. Engvall, L. Holmlid, J. Chem. Phys. 110, 1212 (1999)

    Article  Google Scholar 

  13. L. Holmlid, P.G. Menon, Appl. Catal. A 212, 247 (2001)

    Article  Google Scholar 

  14. K. Möller, L. Holmlid, Surf. Sci. 204, 98 (1988)

    Article  Google Scholar 

  15. J. Wang, L. Holmlid, Chem. Phys. 261, 481 (2000)

    Article  Google Scholar 

  16. J. Wang, L. Holmlid, Chem. Phys. 277, 201 (2002)

    Article  Google Scholar 

  17. S. Badiei, L. Holmlid, Int. J. Mass Spectrom. 220, 127 (2002)

    Article  Google Scholar 

  18. S. Badiei, L. Holmlid, Chem. Phys. 282, 137 (2002)

    Article  Google Scholar 

  19. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. Tech. Phys. Lett. 6, 95 (1980)

    Google Scholar 

  20. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. Dokl. 26, 974 (1981)

    Google Scholar 

  21. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. JETP 75, 440 (1992)

    Google Scholar 

  22. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. JETP 75, 602 (1992)

    Google Scholar 

  23. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, J. Phys. IV Fr. 10, Pr5-333 (2000)

    Google Scholar 

  24. L. Holmlid, Chem. Phys. 237, 11 (1998)

    Article  Google Scholar 

  25. G.É. Norman, JETP Lett. 73, 10 (2001)

    Article  Google Scholar 

  26. B.B. Zelener, B.V. Zelener, E.A. Manykin, J. Exp. Theor. Phys. JETP 99, 1173 (2004)

    Article  Google Scholar 

  27. M. Bonitz, B.B. Zelener, B.V. Zelener, E.A. Manykin, V.S. Filinov, V.E. Fortov, J. Exp. Theor. Phys. JETP 98, 719 (2004)

    Article  Google Scholar 

  28. S. Badiei, L. Holmlid, Phys. Lett. A 327, 186 (2004)

    Article  Google Scholar 

  29. L. Holmlid, Phys. Chem. Chem. Phys. 6, 2048 (2004)

    Article  Google Scholar 

  30. W.T. Silfvast, Laser Fundamentals (Cambridge University Press, 1996)

  31. K. Engvall, A. Kotarba, L. Holmlid, J. Catal. 181, 256 (1999)

    Article  Google Scholar 

  32. C. Åman, L. Holmlid, Appl. Surf. Sci. 64, 71 (1993)

    Article  Google Scholar 

  33. L. Holmlid, J. Opt. Soc. Am. A 18, 367 (2001)

    Google Scholar 

  34. F. Olofson, S. Badiei, L. Holmlid, Langmuir 19, 5756 (2003)

    Article  Google Scholar 

  35. A. Kotarba, K. Engvall, J.B.C. Pettersson, M. Svanberg, L. Holmlid, Surf. Sci. 342, 327 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Holmlid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badiei, S., Holmlid, L. The Rydberg matter laser: excitation, delays and mode effects in the laser cavity medium. Appl. Phys. B 81, 549–559 (2005). https://doi.org/10.1007/s00340-005-1895-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1895-1

PACS

Navigation