Skip to main content
Log in

Tetragonal photonic woodpile structures

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The photonic properties of dielectric woodpile structures with face-centered-tetragonal (fct) and body-centered-tetragonal (bct) lattice symmetries are theoretically studied. Computational calculation of the photonic band structure reveals a photonic band gap between the second and third photonic band in both symmetries. A complete photonic band gap is not found in the bct structure due to a band gap shift with variable direction of lightflow. When the degree of layer disorder in fct woodpiles is increased, the stop bands slightly narrow and the attenuation of the optical transmission is reduced. Even so, layer-to-layer misalignment in dielectric woodpile structures may be tolerable up to 20–30% in most applications. The complete photonic band gap in fct woodpiles remains open with planar layer-to-layer disorder up to 60–70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Ho, C. Chan, C. Soukoulis, R. Biswas, M. Sigalas: Solid State Commun. 89, 413 (1994)

  2. S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano: J. Lightwave Technol. 17, 1948 (1999)

  3. E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. Ho, J. Bostak, D. Bloom: Opt. Lett. 19, 1155 (1994)

    Google Scholar 

  4. E. Özbay, A. Aberyta, G. Tuttle, M. Tringides, R. Biswas, C. Chan, C. Soukoulis, K. Ho: Phys. Rev. B 50, 1945 (1994)

  5. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan: Science 289, 604 (2000)

    Google Scholar 

  6. S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, J. Bur: Nature 394, 251 (1998)

    Google Scholar 

  7. J. Fleming, S. Lin: Opt. Lett. 24, 49 (1999)

    Google Scholar 

  8. S. Noda, N. Yamamoto, A. Sakasi: Jpn. J. Appl. Phys. 35, 909 (1996)

    Google Scholar 

  9. E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. Soukoulis, K. Ho: Appl. Phys. Lett. 69, 3797 (1996)

    Google Scholar 

  10. N. Yamamoto, S. Noda: Jpn. J. Appl. Phys. 37, 3334 (1998)

    Google Scholar 

  11. P. Bell, J. Pendry, L. Moreno, A. Ward: Comput. Phys. Commun. 85, 306 (1995)

    Google Scholar 

  12. D. Wittaker: Opt. Lett. 25, 779 (2000)

    Google Scholar 

  13. N. Yamamoto, S. Noda: Jpn. J. Appl. Phys. 38, 1282 (1999)

    Google Scholar 

  14. Y. Xia, B. Gates, Z.-Y. Li: Adv. Mater. 13, 409 (2001)

    Google Scholar 

  15. A. Chutinan, S. Noda: Phys. Rev. B 57, R2006 (1998)

  16. M. Plihal, A. Maradudin: Phys. Rev. B 44, 8565 (1991)

    Google Scholar 

  17. R. Meade, K. Brommer, A. Rappe, J. Joannopoulos: Appl. Phys. Lett 61, 495 (1992)

    Google Scholar 

  18. S. Fan, P. Villeneuve, J. Joannopoulos: J. Appl. Phys 78, 1415 (1995)

    Google Scholar 

  19. A. Chutinan, S. Noda: J. Opt. Soc. Am. B 16, 1398 (1999)

    Google Scholar 

  20. A. Chutinan, S. Noda: J. Opt. Soc. Am. B 16, 240 (1999)

    Google Scholar 

  21. Z.-Y. Li, Z.-Q. Zhang: Phys. Rev. B 62, 1516 (2000)

  22. G. Smith, M. Kesler, J. Maloney: Mirowave Opt. Tech. Lett. 21, 191 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kopperschmidt.

Additional information

PACS

42.70.Qs; 78.20.Bh; 78.20.Ci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopperschmidt, P. Tetragonal photonic woodpile structures. Appl Phys B 76, 729–734 (2003). https://doi.org/10.1007/s00340-003-1169-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1169-8

Keywords

Navigation