Skip to main content
Log in

Assessment of electronic states and local structure of Mn-atoms in nanometric-sized La0.7Ca0.3Mn1−xNixO3 manganites by means of X-ray-absorption fine structure measurements

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single-phase, nanosized La0.7Ca0.3Mn1−xNixO3 (x = 0, 0.02, 0.07, 0.1) manganites were synthesized via the autocombustion route. Information on the local geometric structure and the charge state of the Mn ions in the nanosized samples was gleaned from extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) data analysis, respectively. The experimental absorption spectra were recorded at room temperature at the K-edge of the Mn-ions. Analysis of the normalized XANES spectra showed that the Mn formal valence remained practically unchanged upon Ni2+ doping. Nevertheless, the observed broadening of the ruling absorption edge suggested that the repulsive nearest-neighbor potential, stemming from the shortening of the distances of Mn to the nearest-neighbor oxygen atoms (Mn–O bonds) in the coordination shell, was slightly modified. The values of the Mn–O distances were obtained from the Fourier transformed EXAFS spectra. A slight but sizeable decrease in the value of the Mn–O bond distances was verified, which pointed to a slight variation in the Mn3+/Mn4+ ratio sparked by the Ni2+ doping. Here, a generation of more Mn4+ ions with smaller radius (0.53 Å) was expected. The obtained Mn–O distances were compared with those resulting from the Rietveld refinement of the X-ray powder diffraction data. The variation of the 〈Mn–O–Mn〉 bond angle with Ni2+ doping was also determined from the analysis of the X-ray diffraction patterns, which allowed visualizing the small distortion of the MnO6 octahedra on substitution of Mn with Ni2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this work will be made available on request.

References

  1. Q.T. The-Long Phan, P.Q. Tran, P.D.H. Thanh, T.D. Yen, S.CYu. Thanh, Critical behavior of La0.7Ca0.3Mn1-xNixO3 manganites exhibiting the crossover of first-and second-order phase transitions. Solid State Commun. 184, 40 (2014)

    Article  ADS  Google Scholar 

  2. J.M.D. Coey, M. Viret, S. von Molnar, Mixed-valence manganites. Adv. Phys. 48, 167 (1999)

    Article  ADS  Google Scholar 

  3. Y. Tokura (ed.), Colossal Magnetoresistive Oxides (Gordon and Breach, London, 1999)

    Google Scholar 

  4. J.M. De Teresa, P.A. Algarabel, C. Ritter, J. Blasco, M.R. Ibarra, L. Morellon, J.I. Espeso, J.C. Gómez-Sal, Possible quantum critical point in La2/3Ca1/3Mn1-xGaxO3. Phys. Rev. Lett. 94, 207205 (2005)

    Article  ADS  Google Scholar 

  5. G. Zhao, K. Conder, H. Keller, K.A. Mueller, Giant oxygen isotope shift in the magnetoresistive perovskite La1–xCaxMnO3+y. Nature (London) 381, 676 (1996)

    Article  ADS  Google Scholar 

  6. M. Jaime, H.T. Hardner, M.B. Salamon, M. Rubinstein, P. Dorsey, D. Emin, Hall-effect sign anomaly and small-polaron conduction in (La1-xGdx)0.67Ca0.33MnO3. Phys. Rev. Lett. 78, 951 (1997)

    Article  ADS  Google Scholar 

  7. A. Gómez, E. Chavarriaga, E. Chavarriaga, J.L. Izquierdo, J. Prado Gonjal, F. Mompean, N. Rojas, O. Morán, Assessment of the relationship between magnetotransport and magnetocaloric properties in nano-sized La0.7Ca0.3Mn1-xNixO3 manganites. J. Mag. Mag. Matter. 469, 558 (2019)

    Article  ADS  Google Scholar 

  8. A. Lanzara, N.L. Saini, M. Brunelli, F. Natali, A. Bianconi, P.G. Radaelli, S.-W. Cheong, Crossover from large to small polarons across the metal-insulator transition in manganites. Phys. Rev. Lett. 81, 878 (1998)

    Article  ADS  Google Scholar 

  9. J.-H. Park, C.T. Chen, S.-W. Cheong, W. Bao, G. Meigs, V. Chakarian, Y.U. Idzerda, Electronic aspects of the ferromagnetic transition in manganese perovskites. Phys. Rev. Lett. 76, 4215 (1996)

    Article  ADS  Google Scholar 

  10. G. Subıas, J. Garcıa, M.G. Proietti, J. Blasco, X-ray-absorption near-edge spectroscopy and circular magnetic x-ray dichroism at the Mn K edge of magnetoresistive manganites. Phys. Rev. B 56, 8183 (1997)

    Article  ADS  Google Scholar 

  11. A.Y. Ignatov, Mn K-edge XANES study of the La1−xCaxMnO3 colossal magnetoresistive manganites, N. Ali. Phys. Rev. B 64, 014413 (2001)

    Article  ADS  Google Scholar 

  12. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  ADS  Google Scholar 

  13. A.A. Coelho, TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210 (2018)

    Article  ADS  Google Scholar 

  14. E. Beaurepaire, J.P. Kappler, D. Malterre, G. Krill, Direct use of X-ray absorption near-edge structure to provide evidence of static or dynamic admixture of 4f -configurations in mixed-valent materials. Europhys. Lett. 5, 369 (1988)

    Article  ADS  Google Scholar 

  15. C. Lin, Y. Zhang, J. Liu, X. Li, Y. Li, L. Tang, L. Xiong, Pressure-induced structural change in orthorhombic perovskite GdMnO3. J. Phys. Condens. Matter 24, 115402 (2012)

    Article  ADS  Google Scholar 

  16. L. Damari, J. Pelleg, G. Gorodetsky, Ch. Koren, V. Markovich, A. Shames, X. Wu, D. Mogilyanski, I. Fita, A. Wisniewski, The effect of Ni doping on the magnetic and transport properties in Pr0.5Ca0.5Mn1-xNixO3 manganites. J. Appl. Phys. 106, 013913 (2009)

    Article  ADS  Google Scholar 

  17. B.J. Kennedy, T. Vogt, C.D. Martin, J.B. Parise, J.A. Hriljac, Pressure-induced orthorhombic to rhombohedral phase transition in LaGaO3. J. Phys. Condens. Matter 13, L925 (2001)

    Article  ADS  Google Scholar 

  18. J.M. Chen, T.L. Chou, J.M. Lee, S.A. Chen, T.S. Chan, T.H. Chen, K.T. Lu, W.T. Chuang, H.-S. Sheu, S.W. Chen, C.M. Lin, N. Hiraoka, H. Ishii, K.D. Tsuei, T.J. Yang, Pressure-induced structural distortion of TbMnO3: a combined X-ray diffraction and X-ray absorption spectroscopy study. Phys. Rev. B 79, 165110 (2009)

    Article  ADS  Google Scholar 

  19. J. Zhao, N.L. Ross, R.J. Angel, New view of the high-pressure behavior of GdFeO3-type perovskites. Acta Crystallogr. B 60, 263 (2004)

    Article  ADS  Google Scholar 

  20. B.K. Teo, EXAFS: Basic Principles and Data Analysis (Springer, Berlin, 1986)

    Book  Google Scholar 

  21. D.C. Koningsberger, R. Prins (eds.), X-ray Absorption: Principles, Applications, Techniques of EXAFS, and XANES (Wiley Interscience, New York, 1988)

    Google Scholar 

  22. J.M. Chen, S.C. Haw, J.M. Lee, S.A. Chen, K.T. Lu, S.W. Chen, M.J. Deng, Y.-F. Liao, J.M. Lin, B.H. Chen, F.C. Chou, N. Hiraoka, H. Ishii, K.D. Tsuei, E. Huang, Pressure-dependent electronic structures and orbital hybridization of Mn 3d states in multiferroic BiMnO3: a combined x-ray absorption, X-ray emission, and resonant X-ray emission study. Phys. Rev. B 86, 045103 (2012)

    Article  ADS  Google Scholar 

  23. I.S. Elfimov, V.I. Anisimov, G.A. Sawatzky, Orbital ordering, Jahn–Teller distortion, and anomalous X-ray scattering in manganates. Phys. Rev. Lett. 82, 4264 (1999)

    Article  ADS  Google Scholar 

  24. F. Bridges, C.H. Booth, G.H. Kwei, J.J. Neumeier, G.A. Sa-watzky, Temperature dependent changes of the Mn 3d and 4p bands near TC in colossal magnetoresistance systems: XANES study of La1-xCaxMnO3. Phys. Rev. B 61, R9237 (2000)

    Article  ADS  Google Scholar 

  25. L. Hozoi, A.H. de Vries, R. Broer, X-ray spectroscopy at the Mn K edge in LaMnO3: an ab initio study. Phys. Rev. B 64, 165104 (2001)

    Article  ADS  Google Scholar 

  26. S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishirara, W. Koshibae, G. Khaliullen, Physics of Transition Metal Oxides (Springer, Berlin, 2004)

    Book  Google Scholar 

  27. Q. Qian, T.A. Tyson, C.-C. Kao, M. Croft, S.-W. Cheong, G. Popov, M. Greenblatt, Local structural distortions in manganites probed by comparative X-ray-emission and X-ray-absorption near-edge measurements. Phys. Rev. B 64, 024430 (2001)

    Article  ADS  Google Scholar 

  28. P.A. Lee, P.H. Citrin, P. Eisenberger, B.M. Kincaid, Extended x-ray absorption fine structure—its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769 (1981)

    Article  ADS  Google Scholar 

  29. M. Benfatto, Y. Joly, C.R. Natoli, Critical reexamination of the experimental evidence of orbital ordering in LaMnO3 and La0.5Sr1.5MnO4. Phys. Rev. Lett. 83, 636 (1999)

    Article  ADS  Google Scholar 

  30. G. Shibata, K. Yoshimatsu, E. Sakai, V.R. Singh, V.K. Verma, K. Ishigami, T. Harano, T. Kadono, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, A. Sawa, H. Kumigashira, M. Oshima, T. Koide, A. Fujimori, Thickness-dependent ferromagnetic metal to paramagnetic insulator transition in La0.6Sr0.4MnO3 thin films studied by X-ray magnetic circular dichroism. Phys. Rev. B 89, 235123 (2014)

    Article  ADS  Google Scholar 

  31. G.Y. Guo, What does the K-edge x-ray magnetic circular dichroism spectrum tell us? J. Phys. Condens. Matter 8, L747 (1996)

    Article  ADS  Google Scholar 

  32. G. Schutz, D. Ahlers, Magnetic EXAFS. J. Phys. IV 7, C2-59 (1997)

    Google Scholar 

  33. G. Subıas, J. Garcia, M.G. Proietti, J. Blasco, X-ray-absorption near-edge spectroscopy and circular magnetic x-ray dichroism at the Mn K edge of magnetoresistive manganites. Phys. Rev. B 56, 8183 (1997)

    Article  ADS  Google Scholar 

  34. V. Procházka, M. Sikora, C. Kapusta, H. Stepánkova, V. Chlan, K. Knízek, Z. Jirák, Local surrounding of Mn in LaMn1-xCoxO3 compounds by means of EXAFS on Mn-K. J. Magn. Magn. Mater. 322, 1198 (2010)

    Article  ADS  Google Scholar 

  35. B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005)

    Article  Google Scholar 

  36. Y.D. Zhang, T.L. Phan, T.S. Yang, S.C. Yu, Local structure and magnetocaloric effect for La0.7Sr0.3Mn1-xNixO3. Curr. Appl. Phys. 12, 803 (2012)

    Article  ADS  Google Scholar 

  37. P. Ghigna, A. Carollo, G. Flor, L. Malavasi, G.S. Peruga, Local structure and electronic properties of the rhombohedral and orthorhombic colossally magnetoresistive manganites La1-xNaxMnO3 by Mn-K edge EXAFS and XANES. J. Phys. Chem. B 109, 4365 (2005)

    Article  Google Scholar 

  38. V. Procházka, C. Kapusta, M. Sikora, D. Sajac, K. Knízek, Z. Jirák, H. Stepánkova, EXAFS study of LaMn1-xCoxO3 compounds. J. Magn. Magn. Mater. 310, e197 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by Universidad Nacional de Colombia, Medellín Campus. A.G acknowledges the financial support of the Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias).

Author information

Authors and Affiliations

Authors

Contributions

All authors registered have made fundamental, direct, and intellectual contributions to the work discussed in this manuscript. All authors discussed the data and revised the manuscript, and also read and approved the final paper manuscript.

Corresponding author

Correspondence to O. Morán.

Ethics declarations

Conflict of interest

In good faith, the authors (A. Gómez, E. Chavarriaga, D. Coral, V.D.N. Bezzon, Y. Pham, S.C. Yu, O. Morán) of the manuscript Assessment of electronic states and local structure of Mn-atoms in nanometric-sized La0.7Ca0.3Mn1-xNixO3 manganites by means of X-ray-absorption fine structure measurements, declare that there is no conflict of interest arising from conflicting financial or other interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, A., Chavarriaga, E., Coral, D. et al. Assessment of electronic states and local structure of Mn-atoms in nanometric-sized La0.7Ca0.3Mn1−xNixO3 manganites by means of X-ray-absorption fine structure measurements. Appl. Phys. A 130, 54 (2024). https://doi.org/10.1007/s00339-023-07177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07177-w

Keywords

Navigation