Skip to main content
Log in

Study on co-precursor driven solid state thermal conversion of iron(III)citrate to iron oxide nanomaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We explore the solventless synthesis of iron oxide nanomaterials obtained on thermal conversion of iron(III)citrate in presence of malonic acid and glucose as co-precursors in varying weight ratios and physical characterization of the materials obtained. Pure phase of hematite was found only for a particular combination of precursor and co-precursor and else a mixture of hematite and magnetite. Significant effect of the co-precursors on the nature and size of the synthesized materials was noticed. Gradual conversion of hematite to magnetite with increasing amount of co-precursor was established. Morin transition was observed in the temperature dependent magnetization study for the hematite materials. Absorption spectroscopy exhibited three different electronic transitions that take place within the 3d5 shell of the octahedrally coordinated Fe3+ ions for hematite materials. The optical (direct and indirect) band gaps estimated from the Tauc’s plot showed particle size dependence. From photoluminescence study the transitions of trapped electrons in various defect states of oxygen vacancies were observed which led to the appearance of nonradiative peaks. In the Raman spectra the significant bands of hematite (A1g and Eg bands) were noted. From morphology study the hematite nanomaterials appear as clusters of large irregular shaped particles of various sizes. Formation of hematite nanomaterials as observed by XRD studies was supplemented by the SAED patterns obtained in the HRTEM study. Present study established that nano-sized pure hematite materials can be thermally synthesized at comparatively lower temperature on thermal decomposition of iron(III)citrate by varying the weight ratio of suitable co-precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses (John Wiley & Sons, 2003)

    Google Scholar 

  2. A. Ali, H. Zafar, M. Zia, I. ulHaq, A.R. Phull, J.S. Ali, A. Hussain, Nanotech. Sci. Appl. 9, 49 (2016)

    Google Scholar 

  3. S. Kumar, M. Kumar, A. Singh, Contemp. Phys. 62, 144 (2021)

    ADS  Google Scholar 

  4. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Sci. Technol. Adv. Mater. 16, 23501 (2015)

    Google Scholar 

  5. A.H. Morrish, Canted Antiferromagnetism: Hematite (World Scientific, 1994)

    Google Scholar 

  6. J. García, G. Subías, J. Phys.: Condens. Matter 16, R145 (2004)

    ADS  Google Scholar 

  7. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, H.E. Toma, J. Magn. Magn. Mater. 279, 210 (2004)

    ADS  Google Scholar 

  8. D.L. Huber, Small 1, 482 (2005)

    Google Scholar 

  9. O.M. Lemine, N. Madkhali, M. Hjiri, N.A. All, M.S. Aida, Ceram. Int. 46, 28821 (2020)

    Google Scholar 

  10. S. Gul, S.B. Khan, I.U. Rehman, M.A. Khan, M.I. Khan, Frontiers in Materials 6, 179 (2019)

    ADS  Google Scholar 

  11. A.A. Nikitin, I.V. Shchetinin, N.Y. Tabachkova, M.A. Soldatov, A.V. Soldatov, N.V. Sviridenkova, E.K. Beloglazkina, A.G. Savchenko, N.D. Fedorova, M.A. Abakumov, Langmuir 34, 4640 (2018)

    Google Scholar 

  12. H. Alinezhad, P.H.T. Amiri, S.M. Tavakkoli, R.M. Muhiebes, Y.F. Mustafa, J. Chem. Rev. 4, 28–312 (2022)

    Google Scholar 

  13. N.V. Long, T. Teranishi, Y. Yang, C.M. Thi, Y. Cao, M. Nogami, Int. J. Metal. Mater. Eng. 1, 1 (2015)

    Google Scholar 

  14. G.H. Chala, J. Chem. Rev. 5, 1 (2023)

    MathSciNet  Google Scholar 

  15. J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang, M. Sun, Molecules 19, 11465 (2014)

    Google Scholar 

  16. C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, J. Phys. Chem. B 110, 17806 (2006)

    Google Scholar 

  17. M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Aisiri, Nanomaterials 3, 43 (2011)

    Google Scholar 

  18. C.N.R. Rao, J. Gopalakrishnan, New directions in solid state chemistry (Cambridge University Press, 1997)

    Google Scholar 

  19. P.S. Bassi, B.S. Randhawa, H.S. Jamwal, J. Therm. Anal. 29, 439 (1984)

    Google Scholar 

  20. A. Srivastava, P. Singh, V.G. Gunjikar, A.P.B. Sinha, Thermochim. Acta 86, 77 (1985)

    Google Scholar 

  21. A. Dey, M. Zubko, J. Kusz, V.R. Reddy, A. Banerjee, A. Bhattacharjee, Solid State Sci. 95, 105932 (2019)

    Google Scholar 

  22. Z. Padashbarmchi, A.H. Hamidian, H. Zhang, L. Zhou, N. Khorasani, M. Kazemzad, C. Yu, RSC Adv. 5, 10304 (2015)

    ADS  Google Scholar 

  23. M.H. Habibi, N. Kiani, J. Therm. Anal. Calorim. 112, 573 (2013)

    Google Scholar 

  24. I.S. Lyubutin, C.R. Lin, Y.V. Korzhetskiy, T.V. Dmitrieva, R.K. Chiang, J. Appl. Phys. 106, 34311 (2009)

    Google Scholar 

  25. X. Zhang, Y. Niu, X. Meng, Y. Li, J. Zhao, CrystEngComm 15, 8166 (2013)

    Google Scholar 

  26. V.L. Stanford, S. Vyazovkin, Ind. Eng. Chem. Res. 56, 7964 (2017)

    Google Scholar 

  27. C.N. Hinshelwood, J. Chem. Soc. Trans. 117, 156 (1920)

    Google Scholar 

  28. K. Heyns, R. Stute, H. Paulsen, Carbohyd. Res. 2, 132 (1966)

    Google Scholar 

  29. B. D. Cullity and S. R. Stock, New York 174 (2001)

  30. C.E. Johnson, J. Phys. D Appl. Phys. 29, 2266 (1996)

    ADS  Google Scholar 

  31. A. Bhattacharjee, S. Reiman, V. Ksenofontov, P. Gütlich, J. Phys.: Condens. Matter 15, 5103 (2003)

    ADS  Google Scholar 

  32. A. Bhattacharjee, H. Mandal, M. Roy, J. Kusz, W. Hofmeister, J. Magn. Magn. Mater. 323, 3007–3012 (2011)

    ADS  Google Scholar 

  33. A. Bhattacharjee, A. Rooj, M. Roy, J. Kusz, P. Gütlich, J. Mater. Sci. 48, 2961 (2013)

    ADS  Google Scholar 

  34. F.J. Morin, Phys. Rev. 78, 819 (1950)

    ADS  Google Scholar 

  35. A. Bhattacharjee, D. Roy, M. Roy, S. Chakraborty, A. De, J. Kusz, W. Hofmeister, J. Alloys Compds. 503, 449–453 (2010)

    Google Scholar 

  36. Ö. Özdemir, D.J. Dunlop, T.S. Berquo, Geochem Geophys Geosyst (2008). https://doi.org/10.1029/2008GC002110

    Article  Google Scholar 

  37. C.B. De Boer, T.A.T.T. Mullender, M.J. Dekkers, Geophys. J. Int. 146, 201 (2001)

    ADS  Google Scholar 

  38. A. Rufus, N. Sreeju, D. Philip, J. Phys. Chem. Solids 124, 221 (2019)

    ADS  Google Scholar 

  39. S. Mitra, S. Das, K. Mandal, S. Chaudhuri, Nanotechnology 18, 275608 (2007)

    Google Scholar 

  40. A. Rufus, N. Sreeju, V. Vilas, D. Philip, J. Mol. Liq. 242, 537 (2017)

    Google Scholar 

  41. G. Wu, X. Tan, G. Li, C. Hu, J. Alloy. Compd. 504, 371 (2010)

    Google Scholar 

  42. J. Torrent, V. Barrón, Encyclopedia of Surface Colloid Sci. 1, 1438 (2002)

    Google Scholar 

  43. Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, B.S. Zou, C. Burda, Phys. Rev. B 71, 125411 (2005)

    ADS  Google Scholar 

  44. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6682 (2012)

    Google Scholar 

  45. A. Rufus, N. Sreeju, D. Philip, RSC Adv. 6, 94206 (2016)

    ADS  Google Scholar 

  46. A. Lassoued, M.S. Lassoued, F. Karolak, S. García-Granda, B. Dkhil, S. Ammar, A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18480 (2017)

    Google Scholar 

  47. J.I. Pankove, New Jersey 92, 36 (1971)

    Google Scholar 

  48. M. Mohammadikish, Ceram. Int. 40, 1351 (2014)

    Google Scholar 

  49. S. Piccinin, Phys. Chem. Chem. Phys. 21, 2957 (2019)

    Google Scholar 

  50. R.N. Goyal, A.K. Pandey, D. Kaur, A. Kumar, J. Nanosci. Nanotechnol. 9, 4692 (2009)

    Google Scholar 

  51. L. Dghoughi, B. Elidrissi, Appl. Surf. Sci 253, 1823 (2006)

    ADS  Google Scholar 

  52. N. Beermann, L. Vayssieres, S. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 147, 2456 (2000)

    ADS  Google Scholar 

  53. N. Özer, F. Tepehan, Sol. Energy Mater. Sol. Cells 56, 141 (1999)

    Google Scholar 

  54. Y. Zhang, W. Liu, C. Wu, T. Gong, J. Wei, M. Ma, K. Wang, M. Zhong, D. Wu, Mater. Res. Bull. 43, 3490 (2008)

    Google Scholar 

  55. L. Lu, L. Li, X. Wang, G. Li, J. Phys. Chem. B 109, 17151 (2005)

    Google Scholar 

  56. N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J.Z. Zhang, J. Phys. Chem. B 102, 770 (1998)

    Google Scholar 

  57. D.M. Sherman, T.D. Waite, Am. Miner. 70, 1262 (1985)

    ADS  Google Scholar 

  58. S. Rada, E. Culea, M. Rada, Chem. Phys. Lett. 696, 92 (2018)

    ADS  Google Scholar 

  59. B.S. Zou, V. Volkov, J. Phys. Chem. Solids 61, 757 (2000)

    ADS  Google Scholar 

  60. M.E. Sadat, M.K. Baghbador, A.W. Dunn, H.P. Wagner, R.C. Ewing, J. Zhang, H. Xu, G.M. Pauletti, D.B. Mast, D. Shi, Appl. Phys. Lett. 105, 91903 (2014)

    Google Scholar 

  61. P. Thomas, P. Sreekanth, K.E. Abraham, J. Appl. Phys. 117, 53103 (2015)

    ADS  Google Scholar 

  62. D. Neff, P. Dillmann, L. Bellot-Gurlet, G. Béranger, Corros. Sci. 47, 515 (2005)

    Google Scholar 

  63. P. Lottici, C. Baratto, D. Bersani, G. Antonioli, A. Montenero, M. Guarneri, Opt. Mater. 9, 368 (1998)

    ADS  Google Scholar 

  64. V. Vendange, D.J. Jones, P. Colomban, J. Phys. Chem. Solids 57, 1907 (1996)

    ADS  Google Scholar 

  65. J.S. Justus, S.D.D. Roy, K. Saravanakumar, A.M.E. Raj, Mater. Res. Express 8, 55005 (2021)

    Google Scholar 

  66. S. Geschwind, J.P. Remeika, Phys. Rev. 122, 757 (1961)

    ADS  Google Scholar 

  67. C.P. Marshall, W.J.B. Dufresne, C.J. Rufledt, J. Raman Spectrosc. 51, 1522 (2020)

    ADS  Google Scholar 

  68. I. Chamritski, G. Burns, J. Phys. Chem. B 109, 4965 (2005)

    Google Scholar 

  69. I.R. Beattie, T.R. Gilson, J. Chem. Soc. A Inorg Phys Theoret 1970, 980–986 (1970)

    Google Scholar 

  70. N.M.A. Rashid, C. Haw, W. Chiu, N.H. Khanis, A. Rohaizad, P. Khiew, S.A. Rahman, CrystEngComm 18, 4720 (2016)

    Google Scholar 

  71. I.V. Chernyshova, M.F. Hochella Jr., A.S. Madden, Phys. Chem. Chem. Phys. 9, 1736 (2007)

    Google Scholar 

  72. R. Vinayagam, S. Pai, T. Varadavenkatesan, M.K. Narasimhan, S. Narayanasamy, R. Selvaraj, Surfaces and Interfaces 20, 100618 (2020)

    Google Scholar 

  73. S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar, A. Pugazhendhi, J. Photochem. Photobiol., B 192, 74 (2019)

    Google Scholar 

  74. S.K. Maji, N. Mukherjee, A. Mondal, B. Adhikary, Polyhedron 33, 145 (2012)

    Google Scholar 

  75. R.F. Egerton, Physical principles of electron microscopy (Springer, 2005)

    Google Scholar 

  76. R.H. Walter, I.S. Fagerson, J. Food Sci. 33, 294 (1968)

    Google Scholar 

  77. K. Katō, N. Takahashi, Agric. Biol. Chem. 31, 519 (1967)

    Google Scholar 

  78. X. Ou, X. Quan, S. Chen, F. Zhang, Y. Zhao, J. Photochem. Photobiol., A 197, 382 (2008)

    Google Scholar 

  79. W. Qian, Q. Chen, F. Cao, C. Chen, Open Mater. Sci. J. 2, 19 (2008)

    Google Scholar 

  80. A. Angermann, J. Töpfer, J. Mater. Sci. 43, 5123 (2008)

    ADS  Google Scholar 

  81. J.C. Kuriacose, S.S. Jewur, J. Catal. 50, 330 (1977)

    Google Scholar 

  82. P.S. Mendoza, K. Márquez, O. Rubilar, D. Contreras, Appl. Nanosci. 9, 371–385 (2018)

    Google Scholar 

Download references

Acknowledgements

Author SK is thankful to DST-INSPIRE, Government of India for providing a fellowship. Authors acknowledge UGC-DAE-CSR, Indore, India, for providing facility to carry out Mössbauer measurements. Financial support for the thermogravimetry analyser (STA 449 F3 Jupiter) to the Department of Science and Technology, Government of India, through a grant to the Department of Physics, Visva-Bharati is gratefully acknowledged. Authors thank DST PURSE Facility, Visva-Bharati University for providing the FE–SEM and EDX facilities.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, major data collection and analysis were performed by SK. GG, PKS, TS, MZ, MW and VRR were involved in some data collections. AB conceptualized the problem and designed the study. The first draft of the manuscript was written by SK and finalized by AB. Authors reviewed the final manuscript.

Corresponding author

Correspondence to A. Bhattacharjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Sarkar, T., Ghorai, G. et al. Study on co-precursor driven solid state thermal conversion of iron(III)citrate to iron oxide nanomaterials. Appl. Phys. A 129, 264 (2023). https://doi.org/10.1007/s00339-023-06559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06559-4

Keywords

Navigation