Skip to main content
Log in

Enhanced dielectric properties of gadolinium and vanadium co-substituted potassium sodium niobate (KNN)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report the synthesis of lead-free K0.5GdxVy Na0.5-xNb1-yO3 (x = 0.0, 0.02, 0.04, 0.06, y = 0.0, 0.05, 0.1, 0.15) ceramics via solid-state reaction. The X-ray diffraction (XRD) revealed the pure crystallite formation with an orthorhombic phase, whereas Gd/V co-doping induced tetragonal–orthorhombic phase coexistence and pseudo-cubic phase formation. The crystallite size decreased from 19.26 to 7.82 nm with the increase in doping. X-ray photoelectron spectroscopy (XPS) showed the existence of vanadium in + 3, + 4, and + 5 oxidation states, whereas oxygen vacancies decreased with the increase in doping concentration. The KNN ceramic samples exhibit the most prominent Raman scattering peaks around 257, 616, and 867 cm−1 corresponding to ν5, ν1, (ν1 + ν5) Raman active modes of NbO6 octahedra. The optical studies showed that direct bandgap energy decreased from 3.156 to 2.897 eV with increasing dopant concentration. Fourier-transform infrared spectroscopy (FTIR) revealed that Nb–O bond length decreased with the addition of dopants from 0.1713 to 0.1684 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis confirmed the coexistence of orthorhombic and tetragonal phases. The KNN ceramics exhibited enhanced dielectric constant with high Tc of 777 K and relaxor behaviour attributed to the formation of polar nanoregions and multiple phase coexistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

Data will be made available on request.

References

  1. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 13509–13518 (2019)

    Google Scholar 

  2. A. Saxena, A. Hussain, A. Saxena, A.J. Joseph, R.S. Saxena, Dielectric dispersion near the morphotropic phase boundary of 0.64 PMN-0.36 PT ceramics. Ceramics. Int. (2022)

  3. F. Guo, S. Zhang, W. Long, P. Fang, X. Li, Z. Xi, SnO2 modified PNN-PZT ceramics with ultra-high piezoelectric and dielectric properties. Ceramics. Int. (2022)

  4. Z. Yang, H. Du, L. Jin, D. Poelman, High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J. Mater. Chem A. 9, 18026–18085 (2021)

    Google Scholar 

  5. Y. Zhang, J.-F. Li, Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C 7, 4284–4303 (2019)

    Google Scholar 

  6. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, G. AlFalah, L.F. AlOusi, G. Yasin, M. Iqbal, Study on the addition of SiO2 nanowires to BaTiO3: Structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids 156, 110183 (2021)

    Google Scholar 

  7. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 9520–9530 (2019)

    Google Scholar 

  8. Y. Slimani, B. Unal, M. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 31, 7786–7797 (2020)

    Google Scholar 

  9. M. Mhareb, Y. Slimani, Y. Alajerami, M. Sayyed, E. Lacomme, M. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020)

    Google Scholar 

  10. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, (BaTiO3) 1–x+(Co0.5Ni0.5Nb0.06Fe1.94O4) x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceramic. Soc. 104, 5648–5658 (2021)

    Google Scholar 

  11. J. Jiang, H. Li, C. Zhao, C. Lin, X. Wu, T. Lin, M. Gao, Z. Wang, Broad-temperature-span and improved piezoelectric/dielectric properties in potassium sodium niobate-based ceramics through a diffusion phase transition. J. Alloy. Compd. 925, 166708 (2022)

    Google Scholar 

  12. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vaněk, J. Petzelt, M. Eriksson, Z. Shen, Broadband dielectric response and grain-size effect in K 0.5 Na 0.5 NbO 3 ceramics. J. Appl. Phys. 107, 014111 (2010)

    ADS  Google Scholar 

  13. H. Birol, D. Damjanovic, N. Setter, Preparation and characterization of (K0.5Na0.5) NbO3 ceramics. J. Eur. Ceramic. Soc. 26, 861–866 (2006)

    Google Scholar 

  14. M. Peddigari, S. Thota, D. Pamu, Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5) NbO3 ceramics. AIP. Adv. 4, 087113 (2014)

    ADS  Google Scholar 

  15. H. Hayashi, S. Kawada, M. Kimura, Y. Nakai, T. Tabata, K. Shiratsuyu, K. Nada, H. Takagi, Reliability of nickel inner electrode lead-free multilayer piezoelectric ceramics. Japanese. J. Appl. Phys. 51, 09LD01 (2012)

    Google Scholar 

  16. K. Kobayashi, Y. Doshida, Y. Mizuno, C.A. Randall, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5) NbO3–LiF piezoelectric actuator. Japanese. J. Appl. Phys. 52, 09KD07 (2013)

    Google Scholar 

  17. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    ADS  Google Scholar 

  18. S. Qian, K. Zhu, X. Pang, J. Liu, J. Qiu, J. Du, Phase transition, microstructure, and dielectric properties of Li/Ta/Sb co-doped (K, Na) NbO3 lead-free ceramics. Ceram. Int. 40, 4389–4394 (2014)

    Google Scholar 

  19. P. Li, B. Liu, B. Shen, J. Zhai, Y. Zhang, F. Li, X. Liu, Mechanism of significantly enhanced piezoelectric performance and stability in textured potassium-sodium niobate piezoelectric ceramics. J. Eur. Ceram. Soc. 38, 75–83 (2018)

    Google Scholar 

  20. L.-Q. Cheng, K. Wang, Q. Yu, J.-F. Li, Structure and composition characterization of lead-free (K, Na) NbO 3 piezoelectric nanorods synthesized by the molten-salt reaction. J. Mater. Chem C. 2, 1519–1524 (2014)

    Google Scholar 

  21. F.-Z. Yao, K. Wang, W. Jo, J.-S. Lee, J.-F. Li, Effect of poling temperature on piezoelectricity of CaZrO3-modified (K, Na) NbO3-based lead-free ceramics. J. Appl. Phys. 116, 114102 (2014)

    ADS  Google Scholar 

  22. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018)

    Google Scholar 

  23. X. Lv, J. Wu, J. Zhu, D. Xiao, X. Zhang, A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction. J. Eur. Ceram. Soc. 38, 85–94 (2018)

    Google Scholar 

  24. X. Lv, J. Wu, S. Yang, D. Xiao, J. Zhu, Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics. ACS Appl. Mater. Interfaces. 8, 18943–18953 (2016)

    Google Scholar 

  25. H. Tao, W. Wu, J. Wu, Electrical properties of holmium doped (K, Na)(Nb, Sb) O3-(Bi, Na) HfO3 ceramics with wide sintering and poling temperature range. J. Alloy. Compd. 689, 759–766 (2016)

    Google Scholar 

  26. W. Wu, M. Chen, B. Wu, Y. Ding, C. Liu, Lead-free (K, Na)(Nb, Sb) O3-Zn1− x (Bi0.5K0.5) xZrO3 ceramics: phase evolution and electrical properties. J. Alloys. Compd. 695, 2981–2986 (2017)

    Google Scholar 

  27. M.A.M. Harttar, M.W.A. Rashid, U.A.A. Azlan, Physical and electrical properties enhancement of rare-earth doped-potassium sodium niobate (KNN): a review. Ceramics-Silikáty 59, 158–163 (2015)

    Google Scholar 

  28. Y. Zhao, J. Du, X. Niu, J. Hao, W. Li, P. Fu, Z. Xu, Lead-free rare earth-modified (K 0.44 Na 0.52 Li 0.04)(Nb 0.86 Ta 0.1 Sb 0.04) O 3 ceramics: phase structure, electrical and photoluminescence properties. J. Mater. Sci.: Mater. Electronics 29, 4791–4800 (2018)

    Google Scholar 

  29. X. Vendrell, J. García, E. Cerdeiras, D. Ochoa, F. Rubio-Marcos, J. Fernández, L. Mestres, Effect of lanthanide doping on structural, microstructural and functional properties of K0.5Na0.5NbO3 lead-free piezoceramics. Ceramics. Int. 42, 17530–17538 (2016)

    Google Scholar 

  30. I. Grinberg, V.R. Cooper, A.M. Rappe, Relationship between local structure and phase transitions of a disordered solid solution. Nature 419, 909–911 (2002)

    ADS  Google Scholar 

  31. M. Ahart, M. Somayazulu, R. Cohen, P. Ganesh, P. Dera, H.-K. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu, Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008)

    ADS  Google Scholar 

  32. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Google Scholar 

  33. M.A. Rafiq, M.E. Costa, P.M. Vilarinho, Pairing high piezoelectric coefficients, d 33, with high curie temperature (TC) in lead-free (K, Na) NbO3. ACS Appl. Mater. Interfaces. 8, 33755–33764 (2016)

    Google Scholar 

  34. S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, Piezoelectric properties in perovskite 0.948 (K 0.5 Na 0.5) Nb O 3–0.052 Li Sb O 3 lead-free ceramics. J. Appl. Phys. 100, 104108 (2006)

    ADS  Google Scholar 

  35. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem C. 4, 1795–1803 (2016)

    Google Scholar 

  36. H. Xie, G. Liu, L. Yang, S. Pang, C. Yuan, X. Zhang, H. Wang, C. Zhou, J. Xu, Excellent optical, dielectric, and ferroelectric properties of Sr (In 0.5 Nb 0.5) O 3 modified K 0.5 Na 0.5 NbO 3 lead-free transparent ceramics. J. Mater. Sci.: Mater. Electronics. 29, 19123–19129 (2018)

    Google Scholar 

  37. P. Mahesh, S. Thota, D. Pamu, Dielectric response and ac-conductivity studies of gd 2 o 3-contained k 0.5 na 0.5 nbo 3 piezoelectric ceramics. IEEE. Trans. Dielectrics. Electrical. Insulation. 22, 3668–3675 (2015)

    Google Scholar 

  38. M. Peddigari, P. Dobbidi, Raman, dielectric and variable range hopping nature of Gd2O3-doped K0.5N0.5NbO3 piezoelectric ceramics. AIP. Adv. 5, 107129 (2015)

    ADS  Google Scholar 

  39. H. Pan, D. Jin, W. Wu, J. Cheng, Z. Meng, Effect of V 2 O 5 on the sintering behavior, microstructure, and electrical properties of (Na 0.5 K 0.5) NbO 3 ceramics. IEEE. Trans. Ultrasonics, Ferroelectrics, Frequency Control. 55, 994–999 (2008)

    Google Scholar 

  40. F. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa, J.E. García, R.E. Rojas-Hernandez, M. Castro, L. Ramajo, Understanding the piezoelectric properties in potassium-sodium niobate-based lead-free piezoceramics: interrelationship between intrinsic and extrinsic factors. J. Eur. Ceram. Soc. 37, 3501–3509 (2017)

    Google Scholar 

  41. D.-Q. Zhang, Z.-C. Qin, X.-Y. Yang, H.-B. Zhu, M.-S. Cao, Study on synthesis and evolution of sodium potassium niobate ceramic powders by an oxalic acid-based sol–gel method. J. Sol-Gel. Sci. Technol. 57, 31–35 (2011)

    Google Scholar 

  42. X. Wu, K.W. Kwok, F. Li, Upconversion fluorescence studies of sol–gel-derived Er-doped KNN ceramics. J. Alloy. Compd. 580, 88–92 (2013)

    Google Scholar 

  43. K. Kambale, S. Shroff, S. Butee, R. Singh, A. Kulkarni, Effect of addition of V2O5 on the densification, dielectric and ferroelectric behavior of lead free potassium sodium niobate ceramics. Ferroelectrics 518, 94–102 (2017)

    ADS  Google Scholar 

  44. X. Lv, N. Zhang, J. Wu, X.-X. Zhang, The role of adding Bi0.5A0.5ZrO3 in affecting orthorhombic-tetragonal phase transition temperature and electrical properties in potassium sodium niobate ceramics. Acta. Materialia. 197, 224–234 (2020)

    ADS  Google Scholar 

  45. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)

    ADS  MATH  Google Scholar 

  46. A. Sahai, N. Goswami, Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method. Physica E 58, 130–137 (2014)

    ADS  Google Scholar 

  47. Y. Wang, E. Yu, H. Yang, Q. Zhang, Growth behavior of Li & Sb doped alkalis niobate synthesized by hydrothermal method. Mater. Des. 110, 51–59 (2016)

    Google Scholar 

  48. V. Pal, O. Thakur, R. Dwivedi, Structural investigation of Ca/Zr co-substituted BaTiO3 through XRD and Raman spectroscopy. J. Alloy. Compd. 741, 707–714 (2018)

    Google Scholar 

  49. C.W. Ahn, H.-I. Hwang, K.S. Lee, B.M. Jin, S. Park, G. Park, D. Yoon, H. Cheong, H.J. Lee, I.W. Kim, Raman spectra study of K0.5Na0.5NbO3 ferroelectric thin films. Japanese. J. Appl. Phys. 49, 095801 (2010)

    ADS  Google Scholar 

  50. K.-I. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Raman scattering study of piezoelectric (Na0.5K0.5) NbO3-LiNbO3 ceramics. Japanese. J. Appl. Phys. 44, 7064 (2005)

    ADS  Google Scholar 

  51. L. Xu, F. Chen, F. Jin, L. Qu, K. Zhang, Z. Zhang, G. Gao, K. Wang, W. Wu, Fabrication of the transparent ferroelectric heterostructures based on KNN-based lead-free films. J. Phys. D Appl. Phys. 53, 415301 (2020)

    Google Scholar 

  52. L. Wang, K. Yao, P.C. Goh, W. Ren, Volatilization of alkali ions and effects of molecular weight of polyvinylpyrrolidone introduced in solution-derived ferroelectric K0.5Na0.5NbO3 films. J. Mater. Res. 24, 3516–3522 (2009)

    ADS  Google Scholar 

  53. L. Wang, W. Ren, K. Yao, P.C. Goh, P. Shi, X. Wu, X. Yao, Effect of pyrolysis temperature on K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Am Ceramic. Soc. 93, 3686–3690 (2010)

    Google Scholar 

  54. K. Shalini, N. Giridharan, Coexistence of electric polarization and magnetic ordering in acceptor doped potassium sodium niobate (KNN) ceramics. Mater. Res. Expr. 5, 096104 (2018)

    ADS  Google Scholar 

  55. K. Shalini, D. Prabhu, N. Giridharan, Effect of cobalt substitution on the multiferroic characteristics of ferroelectric potassium sodium niobate (K 0.5 Na 0.5 NbO 3) ceramics. Appl. Phys. A. 124, 1–11 (2018)

    Google Scholar 

  56. K. Shalini, N. Giridharan, Observation of room temperature ferromagnetism and magneto-electric coupling in dual transition element substituted ferroelectric potassium sodium niobate. Ceram. Int. 45, 19002–19014 (2019)

    Google Scholar 

  57. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron. Spectrosc. Relat. Phenom. 135, 167–175 (2004)

    Google Scholar 

  58. T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V.R. Pallem, C. Dussarrat, M. Ritala, M. Leskelä, Atomic layer deposition and characterization of vanadium oxide thin films. RSC Adv. 3, 1179–1185 (2013)

    ADS  Google Scholar 

  59. M. Demeter, M. Neumann, W. Reichelt, Mixed-valence vanadium oxides studied by XPS. Surf. Sci. 454, 41–44 (2000)

    ADS  Google Scholar 

  60. H. Zhai, J. Qi, X. Zhang, H. Li, L. Yang, C. Hu, H. Liu, J. Yang, Preparation and photocatalytic performance of hollow structure LiNb 3 O 8 photocatalysts. Nanoscale Res. Lett. 12, 1–7 (2017)

    Google Scholar 

  61. Y. Wang, L. Hu, Q. Zhang, H. Yang, Phase transition characteristics and associated piezoelectricity of potassium-sodium niobate lead-free ceramics. Dalton Trans. 44, 13688–13699 (2015)

    Google Scholar 

  62. M. Li, Y. Wang, Y. Zheng, G. Fu, D. Sun, Y. Li, Y. Tang, T. Ma, Gadolinium-induced valence structure engineering for enhanced oxygen electrocatalysis. Adv. Energy. Mater. 10, 1903833 (2020)

    Google Scholar 

  63. G.H. Khorrami, A. Kompany, A.K. Zak, Structural and optical properties of (K, Na) NbO3 nanoparticles synthesized by a modified sol–gel method using starch media. Adv. Powder Technol. 26, 113–118 (2015)

    Google Scholar 

  64. M. Sharmila, S.A. Kader, D.J. Ruth, M.V.G. Babu, B. Bagyalakshmi, R.A. Kumar, D.P. Padiyan, B. Sundarakannan, Effect of cobalt substitution on the optical properties of bismuth ferrite thin films. Mater. Sci. Semicond. Process. 34, 109–113 (2015)

    Google Scholar 

  65. Z. Liu, H. Fan, S. Lei, J. Wang, H. Tian, Fatigue properties and impedance analysis of potassium sodium niobate–strontium titanate transparent ceramics. Appl. Phys. A. 122, 1–6 (2016)

    ADS  Google Scholar 

  66. Y. Hong, J. Li, W. Wu, Y. Wu, H. Bai, K. Shi, Q. Meng, Z. Zhou, D. Jia, Structure, electricity, and bandgap modulation in Fe2O3–doped potassium sodium niobate ceramics. Ceram. Int. 44, 16069–16075 (2018)

    Google Scholar 

  67. A. Chowdhury, J. Bould, Y. Zhang, C. James, S.J. Milne, Nano-powders of Na 0.5 K 0.5 NbO 3 made by a sol–gel method. J. Nanoparticle. Res. 12, 209–215 (2010)

    ADS  Google Scholar 

  68. M. De, B. Patra, H. Tewari, Synthesis and structural characterization of vanadium doped sodium niobate [Na (Nb1-xVx) O3, x= 0.30]

  69. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadi, O.M. Aldossary, Y. Al-Douri, Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped barium titanate ceramics. J Alloys Compd 883, 160836 (2021)

    Google Scholar 

  70. R. El-Mallawany, Theoretical and experimental IR spectra of binary rare earth tellurite glasses—1. Infrared Phys. 29, 781–785 (1989)

    ADS  Google Scholar 

  71. Y. Wang, W. Zhu, Q. Sun, L. Tan, Effects of A/B-site dopants on microstructure and domain configuration of potassium sodium niobate lead-free piezoelectric ceramics. J. Alloy. Compd. 787, 407–413 (2019)

    Google Scholar 

  72. G. Shi, J. Wang, H. Wang, Z. Wu, H. Wu, Hydrothermal synthesis of morphology-controlled KNbO3, NaNbO3, and (K, Na) NbO3 powders. Ceram. Int. 43, 7222–7230 (2017)

    Google Scholar 

  73. S. Singh, J. Negi, N. Panwar, Dielectric properties of Na 1–x K x NbO 3, near x= 0.475 morphotropic phase region. Appl. Innov. Res. 2, 11–17 (2020)

    Google Scholar 

  74. K.M. Batoo, S. Kumar, C.G. Lee, Influence of Al doping on electrical properties of Ni–Cd nano ferrites. Curr. Appl. Phys. 9, 826–832 (2009)

    ADS  Google Scholar 

  75. Y. Xu, Ferroelectric materials and their applications (Elsevier, Amsterdam, 2013)

    Google Scholar 

  76. P.D. Gio, T.T. Bau, N.V. Hoai, N.Q. Nam, Some optical, electrical properties of lead free KNN-CZN ceramics. J. Mater. Sci. Chem. Eng. 8, 1–11 (2020)

    Google Scholar 

  77. B. Wu, C. Zhao, Y. Huang, J. Yin, W. Wu, J. Wu, Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl. Mater. Interfaces. 12, 25050–25057 (2020)

    Google Scholar 

  78. J. Yang, Y. Zhao, X. Lou, J. Wu, X. Hao, Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem C. 8, 4030–4039 (2020)

    Google Scholar 

  79. S. Körbel, P. Marton, C. Elsässer, Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions. Phys. Rev. B 81, 174115 (2010)

    ADS  Google Scholar 

  80. S. Behera, V.B. Kamble, S. Vitta, A.M. Umarji, C. Shivakumara, Synthesis, structure and thermoelectric properties of $$\mathrm {La} _ {1-x}\mathrm {Na} _ {x}\mathrm {CoO} _ {3} $$ La 1-x Na x CoO 3 perovskite oxides. Bullet. Mater. Sci. 40 1291–1299, (2017)

  81. F. Devices, K. Uchino, Marcell Dekker Inc, New York, vol 321 (2000)

Download references

Acknowledgements

Author K M Batoo is thankful to the Researchers Supporting Project Number (RSP2023R148) at King Saud University, Saudi Arabia, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ritesh Verma or Khalid Mujasam Batoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest among themselves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Verma, R., Krishnan, C.G. et al. Enhanced dielectric properties of gadolinium and vanadium co-substituted potassium sodium niobate (KNN). Appl. Phys. A 129, 117 (2023). https://doi.org/10.1007/s00339-022-06367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06367-2

Keywords

Navigation