Skip to main content
Log in

Pure polycrystalline barium hexaferrite film prepared without buffer layer, using a sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure polycrystalline BaFe12O19 films have been successfully prepared using a sol–gel method without a buffer layer. The films were annealed at a temperature range of 700 °C to 900 °C in air and oxygen for 2 h. An X-ray diffraction analysis showed that films annealed in air at 800 °C and 900 °C crystallized into a single phase. However, the film annealed in oxygen at 900 °C showed the appearance of a non-magnetic phase. The magnetic properties analysis showed films annealed in air surroundings at 800 °C and 900 °C have large coercivity values (5270 Oe, 5086 Oe) and high saturation magnetization values (160 emu/cm3, 194 emu/cm3), respectively. However, films that were annealed at 800 °C and 900 °C in oxygen surroundings showed high coercivity (940 Oe and 5425 Oe) but low saturation magnetization values (80 emu/cm3 and 64 emu/cm3, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Research data for this article

The research data are available on request.

References

  1. K.S. Stegen, Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy 79, 1–8 (2015). https://doi.org/10.1016/j.enpol.2014.12.015

    Article  Google Scholar 

  2. H.R. Kirchmayr, Permanent magnets and hard magnetic materials. J. Phys. D Appl. Phys. 29, 2763–2778 (1996). https://doi.org/10.1088/0022-3727/29/11/007

    Article  ADS  Google Scholar 

  3. W. Matizamhuka, The impact of magnetic materials in renewable energy-related technologies in the 21st century industrial revolution: The case of South Africa. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/3149412

    Article  Google Scholar 

  4. Y. Li, A. Xia, C. Jin, Synthesis, structure and magnetic properties of hexagonal BaFe12O19 ferrite obtained via a hydrothermal method. J. Mater. Sci. Mater. Electron. 27, 10864–10868 (2016). https://doi.org/10.1007/s10854-016-5195-9

    Article  Google Scholar 

  5. V. Sharma, S. Kumari, B.K. Kuanr, Exchange-coupled hard-soft ferrites; A microwave. J. Alloys Compounds. 736, 266–275 (2018). https://doi.org/10.1016/j.jallcom.2017.11.113

    Article  Google Scholar 

  6. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279–7284 (2014). https://doi.org/10.1016/j.ceramint.2013.12.068

    Article  Google Scholar 

  7. X. Zhang, Z. Yue, L. Li, A. Belik, Orientation growth and magnetic properties of bam hexaferrite films deposited by direct current magnetron sputtering. J. Am. Ceram. Soc. 99, 860–865 (2016). https://doi.org/10.1111/jace.14007

    Article  Google Scholar 

  8. B. Peng, J.Y. Jiang, W.L. Zhang, H.Z. Xu, W.X. Zhang, Thickness effects in barium hexaferrite films deposited by magnetron sputtering. Mater. Res. Innovat. 19, 654–656 (2015). https://doi.org/10.1179/1432891715Z.0000000001767

    Article  ADS  Google Scholar 

  9. Y. Chen, I. Smith, A.L. Geiler, C. Vittoria, V. Zagorodnii, Z. Celinski, V.G. Harris, Realization of hexagonal barium ferrite thick films on Si substrates using a screen printing technique. J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/9/095006

    Article  Google Scholar 

  10. S. Verma, S. Mahadevan, C. Pahwa, A.P. Singh, S.B. Narang, N. Aggarwal, P. Sharma, Improved magnetic and microwave properties of la-substituted barium hexaferrite screen-printed thick films. J. Supercond. Novel Magn. 33, 2507–2512 (2020). https://doi.org/10.1007/s10948-020-05494-2

    Article  Google Scholar 

  11. M.M. Rashad, I.A. Ibrahim, Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magn. Mater. 323, 2158–2164 (2011). https://doi.org/10.1016/j.jmmm.2011.03.023

    Article  ADS  Google Scholar 

  12. D. Lisjak, M. Drofenik, The mechanism of the low-temperature formation of barium hexaferrite. J. Eur. Ceram. Soc. 27, 4515–4520 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.202

    Article  Google Scholar 

  13. Y.Y. Song, S. Kalarickal, C.E. Patton, Optimized pulsed laser deposited barium ferrite thin films with narrow ferromagnetic resonance linewidths. J. Appl. Phys. 94, 5103–5110 (2003). https://doi.org/10.1063/1.1608475

    Article  ADS  Google Scholar 

  14. R. Heindl, H. Srikanth, S. Witanachchi, P. Mukherjee, T. Weller, A.S. Tatarenko, G. Srinivasan, Structure, magnetism, and tunable microwave properties of pulsed laser deposition grown barium ferrite/barium strontium titanate bilayer films. J. Appl. Phys. 101, 9–12 (2007). https://doi.org/10.1063/1.2710467

    Article  Google Scholar 

  15. H. Li, J. Huang, Q. Li, X. Su, Preparation of barium ferrite films with high Fe/Ba ratio by sol-gel method. J. Sol-Gel. Sci. Technol. 52, 309–314 (2009). https://doi.org/10.1007/s10971-009-2052-9

    Article  Google Scholar 

  16. H. Sözeri, Z. Durmuş, A. Baykal, E. Uysal, Preparation of high quality, single domain BaFe 12O 19 particles by the citrate sol-gel combustion route with an initial Fe/Ba molar ratio of 4, Materials Science and Engineering B: Solid-State Materials for Advanced. Mater. Sci. Eng. B Solid State Mater. Adv Technol. 177, 949–955 (2012). https://doi.org/10.1016/j.mseb.2012.04.023

    Article  Google Scholar 

  17. N.C. Pramanik, T. Fujii, M. Nakanishi, J. Takada, Development of nanograined hexagonal barium ferrite thin films by sol-gel technique. Mater. Lett. 59, 468–472 (2005). https://doi.org/10.1016/j.matlet.2004.10.026

    Article  Google Scholar 

  18. Z. Xu, Z. Lan, K. Sun, Z. Yu, R. Guo, F. Bai, Effects of BaM interfacial layer on the c-axis orientation of BaM thin films deposited on SiO2/Si substrates. IEEE Trans. Magn. 49, 4226–4229 (2013). https://doi.org/10.1109/TMAG.2013.2245306

    Article  ADS  Google Scholar 

  19. A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, M.N. Ashiq, Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results Phys. 7, 3203–3208 (2017). https://doi.org/10.1016/j.rinp.2017.08.035

    Article  ADS  Google Scholar 

  20. H. Zheng, M. Han, L. Zheng, J. Deng, P. Zheng, Q. Wu, L. Deng, H. Qin, Magnetic properties of hexagonal barium ferrite films on Pt/MgO(111) substrates annealed at different temperatures. J. Magn. Magn. Mater. 413, 25–29 (2016). https://doi.org/10.1016/j.jmmm.2016.04.010

    Article  ADS  Google Scholar 

  21. A. Lisfi, J.C. Lodder, The effects of ZnO underlayer on microstructural and magnetic properties of BaFe12O19 thin films. J. Phys. Condens. Matter 13, 5917–5922 (2001). https://doi.org/10.1088/0953-8984/13/26/306

    Article  ADS  Google Scholar 

  22. N.B. Ibrahim, Y. Noratiqah, The microstructure and magnetic properties of yttrium iron garnet film prepared using water-alcohol solvents. J. Magn. Magn. Mater. 510, 166953 (2020). https://doi.org/10.1016/j.jmmm.2020.166953

    Article  Google Scholar 

  23. M. Han, Y. Ou, W. Chen, L. Deng, Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol-gel method with and without polyethylene glycol added. J. Alloy. Compd. 474, 185–189 (2009). https://doi.org/10.1016/j.jallcom.2008.06.047

    Article  Google Scholar 

  24. S. Kanagesan, M. Hashim, T. Kalaivani, I. Ismail, N. Rodziah, I.R. Ibrahim, N.A. Rahman, Sintering temperature dependence of optimized microstructure formation of BaFe12O19 using sol–gel method. J. Mater. Sci.: Mater. Electron. 26, 1363–1367 (2015). https://doi.org/10.1007/s10854-014-2547-1

    Article  Google Scholar 

  25. N.B. Ibrahim, Y. Noratiqah, M.F.A. Jailani, E.R. Iruthayaraj, Improved structural and magnetic properties of a non-stoichiometry Ba: Fe ratio of barium hexaferrite film. Appl. Phys. A Mater. Sci. Process. 126, 2–9 (2020). https://doi.org/10.1007/s00339-020-04075-3

    Article  Google Scholar 

  26. A.Z. Arsad, N.B. Ibrahim, Temperature-dependent magnetic properties of YIG thin films with grain size less 12 nm prepared by a sol-gel method. J. Magn. Magn. Mater. 462, 70–77 (2018). https://doi.org/10.1016/j.jmmm.2018.05.003

    Article  ADS  Google Scholar 

  27. Z. Zhuang, M. Rao, D.E. Laughlin, M.H. Kryder, The effect of Pt interlayers on the magnetic and structural properties of perpendicularly oriented barium ferrite media. J. Appl. Phys. 85, 6142–6144 (1999). https://doi.org/10.1063/1.370023

    Article  ADS  Google Scholar 

  28. Y. Marouani, J. Massoudi, M. Noumi, A. Benali, E. Dhahri, P. Sanguino, M.P.F. Graça, M.A. Valente, B.F.O. Costa, Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC Adv. 11, 1531–1542 (2021). https://doi.org/10.1039/d0ra09465j

    Article  ADS  Google Scholar 

  29. Y.Y. Meng, M.H. He, Q. Zeng, D.L. Jiao, S. Shukla, R.V. Ramanujan, Z.W. Liu, Synthesis of barium ferrite ultrafine powders by a sol-gel combustion method using glycine gels. J. Alloy. Compd. 583, 220–225 (2014). https://doi.org/10.1016/j.jallcom.2013.08.156

    Article  Google Scholar 

  30. M.K. Manglam, S. Kumari, J. Mallick, M. Kar, Crystal structure and magnetic properties study on barium hexaferrite of different average crystallite size. Appl. Phys. A Mater. Sci. Process. 127, 1–12 (2021). https://doi.org/10.1007/s00339-020-04232-8

    Article  ADS  Google Scholar 

  31. J.H. Park, J.S. Kim, J.T. Kim, Luminescent properties of BASi2O5:Eu2+ phosphor film fabricated by spin-coating of Ba-Eu precursor on SiO2 glass. J. Opt. Soc. Korea. 18, 45–49 (2014). https://doi.org/10.3807/JOSK.2014.18.1.045

    Article  Google Scholar 

  32. K.M. Yin, L. Chang, F.R. Chen, J.J. Kai, C.C. Chiang, P. Ding, B. Chin, H. Zhang, F. Chen, The effect of oxygen in the annealing ambient on interfacial reactions of Cu/Ta/Si multilayers. Thin Solid Films 388, 15–21 (2001). https://doi.org/10.1016/S0040-6090(01)00780-5

    Article  ADS  Google Scholar 

  33. M. Yousaf, S. Nazir, Q. Hayat, M.N. Akhtar, M. Akbar, Y. Lu, A. Noor, J.M. Zhang, M.A.K.Y. Shah, B. Wang, Magneto-optical properties and physical characteristics of M-type hexagonal ferrite (Ba1-xCaxFe11.4Al0.6O19) nanoparticles (NPs). Ceram. Int. 47, 11668–11676 (2021). https://doi.org/10.1016/j.ceramint.2021.01.006

    Article  Google Scholar 

  34. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, Sol-gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12–2x)O 19. J. Magn. Magn. Mater. 350, 23–29 (2014). https://doi.org/10.1016/j.jmmm.2013.09.007

    Article  ADS  Google Scholar 

  35. M. Amini, A. Gholizadeh, Shape control and associated magnetic and dielectric properties of MFe12O19 (M = Ba, Pb, Sr) hexaferrites. J. Phys. Chem. Solids 147, 109660 (2020). https://doi.org/10.1016/j.jpcs.2020.109660

    Article  Google Scholar 

  36. M. Waqar, M.A. Rafiq, T.A. Mirza, F.A. Khalid, A. Khaliq, M.S. Anwar, M. Saleem, Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials. Appl. Phys. A Mater. Sci. Proc. (2018). https://doi.org/10.1007/s00339-018-1717-z

    Article  Google Scholar 

  37. W.T. Liu, J.M. Wu, Effect of the vacuum extraction and the Fe/Ba ratio on the phase formation of barium ferrite thin film synthesized by sol-gel method. Mater. Chem. Phys. 69, 148–153 (2001). https://doi.org/10.1016/S0254-0584(00)00381-3

    Article  Google Scholar 

  38. G. Tan, X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. 327, 87–90 (2013). https://doi.org/10.1016/j.jmmm.2012.09.047

    Article  ADS  Google Scholar 

  39. K. Sun, Q. Li, H. Guo, Y. Yang, Z. Yu, Z. Xu, X. Jiang, Z. Lan, L. Li, Magnetic property and stress study of barium hexaferrite thin films with different structures. J. Alloy. Compd. 663, 645–650 (2016). https://doi.org/10.1016/j.jallcom.2015.12.193

    Article  Google Scholar 

  40. W. Zhang, W. Zhang, Z. Lu, F. Li, B. Peng, Growth of highly textured barium ferrite thin films on sapphire and their magnetic properties. Thin Solid Films 526, 237–240 (2012). https://doi.org/10.1016/j.tsf.2012.11.002

    Article  ADS  Google Scholar 

  41. S. Tyagi, V.S. Pandey, H.B. Baskey, N. Tyagi, A. Garg, S. Goel, T.C. Shami, RADAR absorption study of BaFe12O19/ZnFe2O4/CNTs nanocomposite. J. Alloy. Compd. 731, 584–590 (2018). https://doi.org/10.1016/j.jallcom.2017.10.071

    Article  Google Scholar 

  42. P. Shepherd, K.K. Mallick, R.J. Green, Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. (2007). https://doi.org/10.1016/j.jmmm.2006.08.046

    Article  Google Scholar 

  43. S. Anjum, F. Sehar, Z. Mustafa, M.S. Awan, Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-017-1456-6

    Article  Google Scholar 

  44. S. Dudziak, Z. Ryzynska, Z. Bielan, J. Ryl, T. Klimczuk, A. Zielinska-Jurek, Pseudo-superparamagnetic behaviour of barium hexaferrite particles. RSC Adv. 10, 18784–18796 (2020). https://doi.org/10.1039/d0ra01619e

    Article  ADS  Google Scholar 

  45. R. Joshi, C. Singh, J. Singh, D. Kaur, S.B. Narang, R.B. Jotania, A study of microwave absorbing properties in Co–Gd doped M-type Ba–Sr hexaferrites prepared using ceramic method. J. Mater. Sci.: Mater. Electron. 28, 11969–11978 (2017). https://doi.org/10.1007/s10854-017-7006-3

    Article  Google Scholar 

  46. T. Kaur, J. Sharma, S. Kumar, A.K. Srivastava, Optical and multiferroic properties of Gd-Co substituted Barium Hexaferrite. Cryst. Res. Technol. 52, 1–8 (2017). https://doi.org/10.1002/crat.201700098

    Article  Google Scholar 

  47. X. Wei, H. Zheng, W. Chen, Q. Wu, P. Zheng, L. Zheng, Y. Zhang, Crystal structure, morphology and magnetic properties of hexagonal M-type barium ferrite film based on the substrate temperature. Chem. Phys. Lett. 752, 137541 (2020). https://doi.org/10.1016/j.cplett.2020.137541

    Article  Google Scholar 

  48. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  Google Scholar 

  49. X. Zhou, F. Lin, X. Ma, W. Shi, Fabrication and magnetic properties of Ce1Y2Fe5O12 thin films on GGG and SiO2/Si substrates. J. Magn. Magn. Mater. 320, 1817–1821 (2008). https://doi.org/10.1016/j.jmmm.2008.02.169

    Article  ADS  Google Scholar 

  50. S. Meng, Z. Yue, L. Li, Effect of ethylene glycol on the orientation and magnetic properties of barium ferrite thin films derived by chemical solution deposition. J. Magn. Magn. Mater. 354, 290–294 (2014). https://doi.org/10.1016/j.jmmm.2013.11.016

    Article  ADS  Google Scholar 

  51. M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, Exchange spring like magnetic behavior in cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 401, 1–8 (2016). https://doi.org/10.1016/j.jmmm.2015.10.007

    Article  ADS  Google Scholar 

  52. M.A. Musa, R.S. Azis, N.H. Osman, J. Hassan, T. Zangina, Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAlG) nanoferrite via sol-gel synthesis. Results in Physics. 7, 1135–1142 (2017). https://doi.org/10.1016/j.rinp.2017.02.038

    Article  ADS  Google Scholar 

  53. E. Baños-López, C.A. Cortés-Escobedo, F. Sánchez-De-Jesús, A. Barba-Pingarrón, A.M. Bolarín-Miró, Crystal structure and magnetic properties of cerium-doped YIG Effect of doping concentration and annealing temperature. J. Alloys Compounds. 730, 127–134 (2018). https://doi.org/10.1016/j.jallcom.2017.09.304

    Article  Google Scholar 

  54. H. Joshi, A.R. Kumar, Scrutiny and correlations of structural, magnetic, and dielectric properties of M-type strontium hexaferrite (SrFe12O19) for permanent magnet applications. J. Mater. Sci.: Mater. Electron. 32, 4331–4346 (2021). https://doi.org/10.1007/s10854-020-05176-8

    Article  Google Scholar 

  55. K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: Synthesis and magnetic properties. Mater. Sci. Eng. B Solid-state Mater. Adv. Technol. 176, 8–13 (2011). https://doi.org/10.1016/j.mseb.2010.08.005

    Article  Google Scholar 

  56. K.J. Noh, H.J. Oh, B.R. Kim, S.C. Jung, W. Kang, S.J. Kim, Photoelectrochemical properties of Fe 2O 3 supported on TiO 2 -based thin films converted from self-assembled hydrogen titanate nanotube powders. J. Nanomater. (2012). https://doi.org/10.1155/2012/475430

    Article  Google Scholar 

  57. R. Mo, Q. Liu, H. Li, S. Yang, J. Zhong, Photoelectrochemical water oxidation in α-Fe2O3 thin films enhanced by a controllable wet-chemical Ti-doping strategy and Co–Pi co-catalyst modification. J. Mater. Sci. Mater. Electron. 30, 21444–21453 (2019). https://doi.org/10.1007/s10854-019-02525-0

    Article  Google Scholar 

  58. K.P. Remya, D. Prabhu, S. Amirthapandian, C. Viswanathan, N. Ponpandian, Exchange spring magnetic behavior in BaFe12O19/Fe3O4 nanocomposites. J. Magn. Magn. Mater. 406, 233–238 (2016). https://doi.org/10.1016/j.jmmm.2016.01.024

    Article  ADS  Google Scholar 

  59. X. Liu, W. Zhong, B. Gu, Y. Du, Exchange-coupling interaction in nanocomposite SrFe 12O 19/γ-Fe 2O 3 permanent ferrites. J. Appl. Phys. 92, 1028–1032 (2002). https://doi.org/10.1063/1.1487908

    Article  ADS  Google Scholar 

  60. N.N. Shams, X. Liu, M. Matsumoto, A. Morisako, Manipulation of crystal orientation and microstructure of barium ferrite thin film. J. Magn. Magn. Mater. (2005). https://doi.org/10.1016/j.jmmm.2004.11.166

    Article  Google Scholar 

  61. Z. Zhuang, M.H. Kryder, R.M. White, D.E. Laughlin, A / Si 562, 289–294 (1999)

    Google Scholar 

  62. R. Shams Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12–4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016). https://doi.org/10.1016/j.jmmm.2015.11.038

    Article  ADS  Google Scholar 

  63. M.J. Iqbal, M.N. Ashiq, P. Hernández-Gómez, J.M.M. Muñoz, C.T. Cabrera, Influence of annealing temperature and doping rate on the magnetic properties of Zr-Mn substituted Sr-hexaferrite nanoparticles. J. Alloy. Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.03.228

    Article  Google Scholar 

  64. R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  65. S.M. Elhamali, N.B. Ibrahim, S. Radiman, Oxygen vacancy-dependent microstructural, optical and magnetic properties of sol-gel Tb02 Er1 Y28 Fe5 O12 films. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.166048

    Article  Google Scholar 

  66. C. Liu, X. Liu, S. Feng, K.M. Ur Rehman, M. Li, C. Zhang, H. Li, X. Meng, Effect of the Fe/Ba ratio and sintering temperature on microstructure and magnetic properties of barium ferrites prepared by hydrothermal method. J. Superconductivity Novel Magn. 31, 933–937 (2018). https://doi.org/10.1007/s10948-017-4283-2

    Article  Google Scholar 

  67. K. Huang, J. Yu, L. Zhang, J. Xu, P. Li, Z. Yang, C. Liu, W. Wang, X. Kan, Synthesis and characterizations of magnesium and titanium doped M-type barium calcium hexaferrites by a solid state reaction method. J. Alloy. Compd. 825, 154072 (2020). https://doi.org/10.1016/j.jallcom.2020.154072

    Article  Google Scholar 

  68. M.A. Almessiere, Y. Slimani, A. Baykal, Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution. J. Alloys Compd. 767, 966–975 (2018). https://doi.org/10.1016/j.jallcom.2018.07.212

    Article  Google Scholar 

  69. K. Habanjar, H. Shehabi, A.M. Abdallah, R. Awad, Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles. Appl. Phys. A Mater Sci Process (2020). https://doi.org/10.1007/s00339-020-03497-3

    Article  Google Scholar 

  70. M.A. Almessiere, Y. Slimani, A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compds. 762, 389–397 (2018). https://doi.org/10.1016/j.jallcom.2018.05.232

    Article  Google Scholar 

  71. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009). https://doi.org/10.1016/j.jmmm.2009.01.004

    Article  ADS  Google Scholar 

  72. F. Mohseni, R.C. Pullar, J.M. Vieira, J.S. Amaral, Enhancement of maximum energy product in exchange-coupled BaFe12O19/Fe3O4 core-shell-like nanocomposites. J. Alloy. Compd. 806, 120–126 (2019). https://doi.org/10.1016/j.jallcom.2019.07.162

    Article  Google Scholar 

  73. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of Ga-Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol-gel auto-combustion route. J. Alloy. Compd. 547, 118–125 (2013). https://doi.org/10.1016/j.jallcom.2012.08.122

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Ministry of Higher Education Malaysia for the financial support with grant no. [FRGS/1/2019/STG02/UKM/02/2] and Universiti Kebangsaan Malaysia for grant no. [GP-2020-K006916].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noratiqah, Y., Ibrahim, N.B. Pure polycrystalline barium hexaferrite film prepared without buffer layer, using a sol–gel method. Appl. Phys. A 129, 1 (2023). https://doi.org/10.1007/s00339-022-06289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06289-z

Keywords

Navigation