Skip to main content
Log in

Ni–Cu–Co ferrite synthesized using the sol–gel method: effects of the Cr3+ ion concentration on its structural, electrical, and dielectric properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the structural, electrical, and dielectric properties of Ni0.1Co0.5Cu0.4Fe2-xCrxO4 (x = 0 and 0.3) ferrites. Samples have been prepared by employing the sol–gel method. The X-ray diffraction data along with Rietveld refinement were used to assess the phase purity and the structural parameters of samples. The morphology and the grain size of the prepared ferrite nanocrystals were observed with scanning electron microscopy. At room temperature, the Raman spectra displayed active phonon modes. FTIR spectra revealed two principal absorption bands due to the stretching vibration of metal oxygen in tetrahedral and octahedral sites. With increasing of Cr3+ concentration, both Raman and FTIR spectra showed that all modes shifted to higher wavenumbers. The dielectric properties were investigated using impedance complex spectroscopy in the frequency region (100‒106 Hz) at different temperatures. The ac-conductivity for both studied compounds was well analyzed using the augmented Jonscher equation. The plots of both imaginary part of permittivity (ε″) and dielectric loss (tanδ) vs. frequency, exhibit a dielectric dispersion in our compounds at low frequencies. This is described according to the Maxwell–Wagner model in agreement with Koop’s theory. The modulus curve was used to interpret the relaxation behaviors of charge carriers. The Nyquist plots of impedance for both samples have been modeled using the same equivalent circuit which is formed by a three-element R-CPE connected in series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.K. Subramani, K. Kondo, M. Tada, M. Abe, M. Yoshimura, N. Matsushita, Mater. Chem. Phys. 123, 16 (2010)

    Google Scholar 

  2. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, J Mater Sci 31, 11352 (2020)

    Google Scholar 

  3. G. Mustafa, M.U. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, J. Alloy. Compd. 618, 428 (2015)

    Google Scholar 

  4. U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.-P. Contour, J.-F. Bobo, J. Fontcuberta, A. Fert, Adv. Mater. 18, 1733 (2006)

    Google Scholar 

  5. P. Jadoun, J. Sharma, S. Kumar, S.N. Dolia, D. Bhatnagar, V.K. Saxena, Ceram. Int. 44, 6747 (2018)

    Google Scholar 

  6. S.E. Shirsath, R.H. Kadam, M.L. Mane, A. Ghasemi, Y. Yasukawa, X. Liu, A. Morisako, J. Alloy. Compd. 575, 145 (2013)

    Google Scholar 

  7. N.N. Sarkar, K.G. Rewatkar, V.M. Nanoti, P.S. Hedaoo, M.N. Giriya, Mat Sci Res India 14, 169 (2017)

    Google Scholar 

  8. R.J. Borg, G.J. Dienes, The Physical Chemistry of Solids (Academic Press, London, 1992)

    Google Scholar 

  9. Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, J. Phys. D. 43, 445003 (2010)

    Google Scholar 

  10. R. Jasrotia, S. Kour, P. Puri, A.D. Jara, B. Singh, C. Bhardwaj, V.P. Singh, R. Kumar, Solid State Sci. 110, 106445 (2020)

    Google Scholar 

  11. X. Pan, A. Sun, Y. Han, W. Zhang, X. Zhao, Mod. Phys. Lett. B 32, 1850321 (2018)

    ADS  Google Scholar 

  12. I.H. Gul, A. Maqsood, J. Alloy. Compd. 465, 227 (2008)

    Google Scholar 

  13. J. Lin, Y. He, X. Du, Q. Lin, H. Yang, H. Shen, Curr. Comput.-Aided Drug Des. 8, 384 (2018)

    Google Scholar 

  14. M. Raghasudha, D. Ravinder, P. Veerasomaiah, J. Nanostruct. Chem. 3, 63 (2013)

    Google Scholar 

  15. D.B. Wiles, R.A. Young, J. Appl. Cryst. 14, 149 (1981)

    Google Scholar 

  16. A. Benali, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, E.K. Hlil, B.F.O. Costa, J. Alloy. Compd. 876, 160222 (2021)

    Google Scholar 

  17. N. Velinov, T. Petrova, R. Ivanova, T. Tsoncheva, D. Kovacheva, I. Mitov, Hyperfine Interact 241, 31 (2020)

    ADS  Google Scholar 

  18. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, J. Magn. Magn. Mater. 499, 166243 (2020)

    Google Scholar 

  19. S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav, Phys. Status Solidi (a) 209, 347 (2012)

    ADS  Google Scholar 

  20. A. Faraz, A. Maqsood, N.M. Ahmad, Adv. Appl. Ceram. 111, 228 (2012)

    ADS  Google Scholar 

  21. R.D. Shannon, Acta. Cryst. A 32, 751 (1976)

    Google Scholar 

  22. M.S. Anwar, F. Ahmed, B.H. Koo, Acta Mater. 71, 100 (2014)

    ADS  Google Scholar 

  23. L. Alexander, H.P. Klug, J. Appl. Phys. 21, 137 (1950)

    ADS  Google Scholar 

  24. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Appl. Phys. A 126, 362 (2020)

    ADS  Google Scholar 

  25. P.P. Hankare, R.P. Patil, U.B. Sankpal, K.M. Garadkar, R. Sasikala, A.K. Tripathi, I.S. Mulla, J. Magn. Magn. Mater. 322, 2629 (2010)

    ADS  Google Scholar 

  26. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011)

    ADS  Google Scholar 

  27. I.S. Lyubutin, C.-R. Lin, S.S. Starchikov, A.O. Baskakov, N.E. Gervits, K.O. Funtov, Y.-T. Tseng, W.-J. Lee, K.-Y. Shih, J.-S. Lee, Inorg. Chem. 56, 12469 (2017)

    Google Scholar 

  28. K. Sabri, A. Rais, K. Taibi, M. Moreau, B. Ouddane, A. Addou, Physica B 501, 38 (2016)

    ADS  Google Scholar 

  29. A. Samavati, M.K. Mustafa, A.F. Ismail, M.H.D. Othman, A.M. Rahman, Mater. Express 6, 473 (2016)

    Google Scholar 

  30. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, J. Phys. Chem. Solids 71, 1669 (2010)

    ADS  Google Scholar 

  31. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    ADS  Google Scholar 

  32. W.B. White, B.A. DeAngelis, Spectrochim. Acta, Part A 23, 985 (1967)

    ADS  Google Scholar 

  33. B. Ammundsen, G.R. Burns, M.S. Islam, H. Kanoh, J. Rozière, J. Phys. Chem. B 103, 5175 (1999)

    Google Scholar 

  34. A. Tozri, E. Dhahri, J. Phys. Chem. Solids 152, 109960 (2021)

    Google Scholar 

  35. C.G. Koops, Phys. Rev. 83, 121 (1951)

    ADS  Google Scholar 

  36. M. Sassi, A. Oueslati, M. Gargouri, Appl. Phys. A 119, 763 (2015)

    ADS  Google Scholar 

  37. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, J Mater Sci 30, 8457 (2019)

    Google Scholar 

  38. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, J Mater Sci 31, 14986 (2020)

    Google Scholar 

  39. S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, J. Magn. Magn. Mater. 323, 1517 (2011)

    ADS  Google Scholar 

  40. Y. Moualhi, H. Rahmouni, M. Gassoumi, K. Khirouni, Ceram. Int. 46, 24710 (2020)

    Google Scholar 

  41. T. Jadli, Y. Moualhi, A. Mleiki, H. Rahmouni, K. Khirouni, A. Cheikhrouhou, J. Solid State Chem. 302, 122378 (2021)

    Google Scholar 

  42. A.R. Chavan, S.B. Somvanshi, P.P. Khirade, K.M. Jadhav, RSC Adv. 10, 25143 (2020)

    ADS  Google Scholar 

  43. W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, J. Phys. Chem. Solids 117, 1 (2018)

    ADS  Google Scholar 

  44. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    ADS  Google Scholar 

  45. M. Horchani, A. Omri, A. Benali, M.S. Eddine, A. Tozri, E. Dhahri, M.F.P. Graca, M.A. Valente, S.K. Jakka, B.F.O. Costa, J. Solid State Chem. 308, 122898 (2022)

    Google Scholar 

  46. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, J. Sol-Gel Sci. Technol. 98, 364 (2021)

    Google Scholar 

  47. A. Benali, B.M.G. Melo, P.R. Prezas, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Graça, B.A. Nogueira, B.F.O. Costa, J. Alloy. Compd. 775, 304 (2019)

    Google Scholar 

  48. R. Verma, S.P. Tiwari, R. Kumari, R. Srivastava, J. Mater. Sci. 53, 4199 (2018)

    ADS  Google Scholar 

  49. T. Tahri, N. Hamdaoui, A. Omri, S. Hcini, L. Beji, E. Dhahri, M. Es-Souni, J Mater. Sci. 27, 10525 (2016)

    Google Scholar 

  50. C.B. Mohamed, K. Karoui, S. Saidi, K. Guidara, A.B. Rhaiem, Physica B 451, 87 (2014)

    ADS  Google Scholar 

  51. J. Massoudi, D. Bouekkeze, A. Bougoffa, K. Khirouni, E. Dhahri, L. Bessais, Adv. Powder Technol. 31, 4714 (2020)

    Google Scholar 

  52. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, J Mater. Sci. 29, 6879 (2018)

    Google Scholar 

  53. E.M. Benali, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graca, M.A. Valente, B.F.O. Costa, RSC Adv. 11, 36148 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-03-03144). This work was also supported by the Tunisian Ministry of Higher Education and Scientific Research with the collaboration of national funds from FCT–Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QRENMais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MH: writing—original draft. AO: conception and design of the study. MSE: data curation and design of the study. AB: data curation and design of the study. AT: writing—review and editing. ED: review and editing. KP: review and editing. BFOC: data curation, visualization, and investigation. MFPG: visualization and investigation.

Corresponding authors

Correspondence to Aref Omri or A. Tozri.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horchani, M., Omri, A., Eddine, M.S. et al. Ni–Cu–Co ferrite synthesized using the sol–gel method: effects of the Cr3+ ion concentration on its structural, electrical, and dielectric properties. Appl. Phys. A 128, 947 (2022). https://doi.org/10.1007/s00339-022-06053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06053-3

Keywords

Navigation