Skip to main content
Log in

Fabrication of luminescent silicon carbide nanoparticles by pulsed laser synthesis in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The capabilities of liquid-assisted laser ablation technique with additional laser irradiation of solutions for the synthesis of SiC nanocrystals (NCs) have been investigated. Nanocrystalline particles of silicon carbide were synthesized by laser irradiation of the mixture of Si and C colloidal solutions using nanosecond and femtosecond laser radiation. For optimization of the conditions for the binary nanoparticles (NPs) formation, the characterization of inner structure, phase composition and morphology was performed by means of high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray photoelectron (XPS), Raman and Fourier-transform infrared (FTIR) spectroscopy and correlation of NPs properties with laser irradiation conditions were found. The characterization results proved the formation of near-spherical SiC NCs which exhibited photoluminescence (PL) in the broad spectral region of 350–600 nm. The origin of the observed photoluminescence is attributed to quantum confinement in small NCs, radiative recombination of photogenerated charge carriers, surface defects or silicon oxycarbide phases. The developed simple approach enables synthesis of colloidal SiC NPs that potentially satisfy the requirements of good dispersibility, stability and efficient PL for applications in biological labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Fan, P.K. Chu, Silicon carbide nanostructures: fabrication, structure, and properties, Ch. 2. (Springer International Publishing, Berlin, 2014), pp.7–114. https://doi.org/10.1007/978-3-319-08726-9

    Book  Google Scholar 

  2. H. Abderrazak, E. SBelHadjHmida, in Properties and Applications of Silicon Carbide. ed. by G. Rosario (InTech, London, 2011), pp.361–388. https://doi.org/10.5772/15736

    Chapter  Google Scholar 

  3. R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Progr. Mater. Sci. 72, 1 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.003

    Article  Google Scholar 

  4. A. Castellazzi, A. Fayyaz, G. Romano, L. Yang, M. Riccio, A. Irace, Microelectron. Reliab. 58, 164 (2016). https://doi.org/10.1016/j.microrel.2015.12.034

    Article  Google Scholar 

  5. A. Kaur, P. Chahal, T. Hogan, IEEE Electron Device Lett. 37, 142 (2016). https://doi.org/10.1109/LED.2015.2508479

    Article  ADS  Google Scholar 

  6. A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi, X. Peng, P.X. Feng, Sci. Rep. 6, 23457 (2016). https://doi.org/10.1038/srep23457

    Article  ADS  Google Scholar 

  7. J.-M. Nhut, R. Vieira, L. Pesant, J.P. Tessonnier, N. Keller, G. Ehret, C. Pham-Huu, M.J. Ledoux, Catal. Today 76, 11 (2002). https://doi.org/10.1016/S0920-5861(02)00206-7

    Article  Google Scholar 

  8. N. Singh, A. Kumar, D. Kaur, Sens. Actuators, B Chem. 262, 162 (2018). https://doi.org/10.1016/j.snb.2018.01.216

    Article  Google Scholar 

  9. V. Ivády, P.V. Klimov, K.C. Miao, A.L. Falk, D.J. Christle, K. Szász, I.A. Abrikosov, D.D. Awschalom, Á. Gali, Phys. Rev. Lett. 117, 220503 (2016). https://doi.org/10.1103/PhysRevLett.117.220503

    Article  ADS  Google Scholar 

  10. S. Castelletto, Mater. Quantum. Technol 1, 023001 (2021). https://doi.org/10.1088/2633-4356/abe04a

    Article  ADS  Google Scholar 

  11. S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, Nat. Mater. 13, 151 (2013). https://doi.org/10.1038/NMAT3806

    Article  ADS  Google Scholar 

  12. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, S.A. Ghoreishi, Adv. Optical Mater. 7, 1901248 (2019). https://doi.org/10.1002/adom.201901248

    Article  Google Scholar 

  13. X. Hou, H. Qin, X. Peng, Nano Lett. 21, 3871 (2021). https://doi.org/10.1021/acs.nanolett.1c00396

    Article  ADS  Google Scholar 

  14. T.M. Tumiel, M. Amin, T.D. Krauss, J. Phys. Chem. C 125(45), 25022 (2021). https://doi.org/10.1021/acs.jpcc.1c05818

    Article  Google Scholar 

  15. B. Lienhard, T. Schröder, S. Mouradian, F. Dolde, T.T. Tran, I. Aharonovich, D. Englund, Bright and photostable single-photon emitter in silicon carbide. Optica 3, 768–774 (2016)

    Article  ADS  Google Scholar 

  16. A. Ahmadivand, J. Phys. Chem. C 125, 782 (2021). https://doi.org/10.1021/acs.jpcc.0c09325

    Article  Google Scholar 

  17. D. Beke, Z. Szekrényes, D. Pálf, G. Róna, I. Balogh, P.A. Maák, G. Katona, Z. Czigány, K. Kamarás, B. Rózsa, L. Buday, B. Vértessy, A. Gali, J. Mater. Res. 28, 205 (2013). https://doi.org/10.1557/jmr.2012.296

    Article  ADS  Google Scholar 

  18. B. Somogyi, V. Zólyomi, A. Gali, Nanoscale 4, 7720 (2012). https://doi.org/10.1039/C2NR32442C

    Article  ADS  Google Scholar 

  19. P. Stenberg, I.D. Booker, R. Karhu, H. Pedersen, E. Janzén, I.G. Ivanov, Physica B 535, 44 (2018). https://doi.org/10.1016/j.physb.2017.06.030

    Article  ADS  Google Scholar 

  20. J.Q. Hu, Q.K. Lu, K.B. Tang, B. Deng, R.R. Jiang, Y.T. Qian, W.C. Yu, G.E. Zhou, X.M. Liu, J.X. Wu, J. Phys. Chem. B 104, 5251 (2000). https://doi.org/10.1021/jp000124y

    Article  Google Scholar 

  21. V.A. Izhevskyi, L.A. Genova, A.H.A. Bressiani, J.C. Bressiani, Mat. Res. 3, 131 (2000). https://doi.org/10.1590/S1516-14392000000400007

    Article  Google Scholar 

  22. S. Askari, M. Macias-Montero, T. Velusamy, P. Maguire, V. Svrcek, D. Mariotti, J. Phys. D: Appl. Phys. 48, 314002 (2015). https://doi.org/10.1088/0022-3727/48/31/314002

    Article  ADS  Google Scholar 

  23. P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Sources Sci Technol. 25, 053002 (2016). https://doi.org/10.1088/0963-0252/25/5/053002

    Article  ADS  Google Scholar 

  24. A. Hamdan, C. Noël, T. Belmonte, Mater. Lett. 135, 115 (2014). https://doi.org/10.1016/j.matlet.2014.07.158

    Article  Google Scholar 

  25. V.S. Burakov, E.A. Nevar, M.I. Nedelko, N.V. Tarasenko, Russ. J. Gen. Chem. 85, 1222 (2015). https://doi.org/10.1134/S1070363215050400

    Article  Google Scholar 

  26. Y.K. Heo, M.A. Bratescu, T. Ueno, N. Saito, J. Appl. Phys. 116, 024302 (2014). https://doi.org/10.1063/1.4887806

    Article  ADS  Google Scholar 

  27. A. Ul-Haq, M. Buerkle, S. Askari, C. Rocks, C. Ni, V. Svrcek, P. Maguire, J.T.S. Irvine, D. Mariotti, J. Phys. Chem. Lett. 11, 1721 (2020). https://doi.org/10.1021/acs.jpclett.9b03828

    Article  Google Scholar 

  28. V.S. Burakov, V.V. Kiris, M.I. Nedelko, N.N. Tarasenka, A.A. Nevar, N.V. Tarasenko, Eur. Phys. J. Appl. Phys. 79, 10801 (2017). https://doi.org/10.1051/epjap/2017170022

    Article  ADS  Google Scholar 

  29. N. Tarasenka, A. Stupak, S. Chakrabarti, D. Mariotti, N. Tarasenko, ChemPhysChem 18, 1074 (2017). https://doi.org/10.1002/cphc.201601182

    Article  Google Scholar 

  30. D. Mariotti, S. Mitra, V. Svrcek, Nanoscale 5, 1385 (2013). https://doi.org/10.1039/C2NR33170E

    Article  ADS  Google Scholar 

  31. T. Yamada, F. Araki, J. Ishihara, K. Miyajima, AIP Adv. 9, 105011 (2019). https://doi.org/10.1063/1.5121756

    Article  ADS  Google Scholar 

  32. E.P. Shuaib, G.K. Yogesh, D. Sastikumar, Materials Today: Proceedings 50, 2745 (2022). https://doi.org/10.1016/j.matpr.2020.08.453

    Article  Google Scholar 

  33. K.S. Khashan, R.A. Ismail, R.O. Mahdi, Appl. Phys. A 124, 443 (2018). https://doi.org/10.1007/s00339-018-1835

    Article  ADS  Google Scholar 

  34. N.V. Tarasenko, A.V. Butsen, A.A. Nevar, N.N. Tarasenka, E. Stankevičius, P. Gečys, G. Račiukaitis, Semiconductors 52, 2140 (2018). https://doi.org/10.1134/s106378261816035

    Article  ADS  Google Scholar 

  35. R.J. Iwanowski, K. Fronc, W. Paszkowicz, M. Heinonen, J. Alloys Compd. 286, 143 (1999). https://doi.org/10.1016/S0925-8388(98)00994-3

    Article  Google Scholar 

  36. R.A. Andrievski, Rev. Adv. Mater. Sci. 22, 1 (2009)

    Google Scholar 

  37. N. Tarasenka, V. Pankov, N. Tarasenko, Colloid Interface Sci. Comm. 14, 13 (2016). https://doi.org/10.1016/j.colcom.2016.09.002

    Article  Google Scholar 

  38. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017). https://doi.org/10.1021/acs.chemrev.6b00468

    Article  Google Scholar 

  39. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, X.W. Du, Langmuir 26, 16652 (2010). https://doi.org/10.1021/la1033146

    Article  Google Scholar 

  40. K.E.J. Lehtinen, M.R. Zachariah, Phys. Rev. B 63, 205402 (2001). https://doi.org/10.1016/S0021-8502(01)00177-X

    Article  ADS  Google Scholar 

  41. Z. Swiatkowska-Warkocka, A. Pyatenko, F. Krok, B.R. Jany, M. Marszalek, Sci. Rep. 5, 9849 (2015). https://doi.org/10.1038/srep09849

    Article  ADS  Google Scholar 

  42. N. Tarasenka, A. Nominé, A. Nevar, M. Nedelko, H. Kabbara, S. Bruyère, J. Ghanbaja, C. Noel, A. Krasilin, G. Zograf, V. Milichko, N. Kulachenkov, S. Makarov, T. Belmonte, N. Tarasenko, Phys. Rev. Appl. 13, 014021 (2020). https://doi.org/10.1103/PhysRevApplied.13.014021

    Article  ADS  Google Scholar 

  43. N. Tarasenka, V. Kiris, E. Stankevičius, N. Tarasenko, V. Pankov, F. Krčma, P. Gečys, G. Račiukaitis, ChemPhysChem 19, 3247 (2018). https://doi.org/10.1002/cphc.201800753

    Article  Google Scholar 

  44. N. Lasemi, C. Rentenberger, G. Liedl, D. Eder, Nanoscale Adv. 2, 3991 (2020). https://doi.org/10.1039/D0NA00317D

    Article  ADS  Google Scholar 

  45. H. Xu, Q. Wang, H. Xiao, X. Li, X. Su, M. Tang, L. Chen, S. Li, RSC Adv. 9, 1319 (2019). https://doi.org/10.1039/C8RA09095E

    Article  ADS  Google Scholar 

  46. S. Askari, A. Ul-Haq, M. Macias-Montero, I. Levchenko, F. Yu, W. Zhou, K. Ostrikov, P. Maguire, V. Svrcek, D. Mariotti, Nanoscale 8, 17141 (2016). https://doi.org/10.1039/C6NR03702J

    Article  Google Scholar 

  47. J. McKenna, J. Patel, S. Mitra, N. Soin, V. Svrcek, P. Maguire, D. Mariotti, Eur. Phys. J. Appl. Phys. 56, 24020 (2011). https://doi.org/10.1051/epjap/2011110203

    Article  ADS  Google Scholar 

  48. I. Kusunoki, Y. Lgari, Appl. Surf. Sci. 59, 95 (1992). https://doi.org/10.1016/0169-4332(92)90293-7

    Article  ADS  Google Scholar 

  49. X. Chen, X. Wang, D. Fang, Fullerenes. Nanotubes and Carbon Nanostructures (2020). https://doi.org/10.1080/1536383X.2020.1794851

    Article  Google Scholar 

  50. V.K. Pustovalov, Chem. Phys. 308, 103 (2005). https://doi.org/10.1016/j.chemphys.2004.08.005

    Article  Google Scholar 

  51. J. Wang, M. Fiebig, Int J Thermophys 16, 1353 (1995). https://doi.org/10.1007/BF02083545

    Article  ADS  Google Scholar 

  52. N.B. Vargaftik, Handbook of Thermophysical Properties of Gases and Fluids, 2nd ed. (Nauka, Moscow, 1972) (in Russian)

  53. Ch. Hess, S. Funk, M. Bonn, D.N. Denzler, M. Wolf, G. Ertl, Appl. Phys. A 71, 477 (2000). https://doi.org/10.1007/s003390000703

    Article  ADS  Google Scholar 

  54. H. Yazawa, T. Shioyama, Y. Suda, F. Kannari, R. Itakura, K. Yamanouchi, J. Chem. Phys. 125, 184311 (2006). https://doi.org/10.1063/1.2387177

    Article  ADS  Google Scholar 

  55. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Small 11, 1620 (2015). https://doi.org/10.1002/smll.201402648

    Article  Google Scholar 

  56. K. Takai, M. Ikeda, T. Yamasaki, C. Kaneta, J. Phys. Commun. 1, 045010 (2017). https://doi.org/10.1088/2399-6528/aa8db4

    Article  Google Scholar 

  57. Y. Li, C. Chen, J.-T. Li, Y. Yang, Z.-M. Lin, Nanoscale Res. Lett. 6, 454 (2011). https://doi.org/10.1186/1556-276X-6-454

    Article  ADS  Google Scholar 

  58. H. Ito, S. Onitsuka, R. Gappa, H. Saitoh, R. Roacho, K.H. Pannell, T. Suzuki, M. Niibe, K. Kanda, J. Phys. 441, 012039 (2013). https://doi.org/10.1088/1742-6596/441/1/012039

    Article  Google Scholar 

  59. T. Sahu, B. Ghosh, S.K. Pradhan, T. Ganguly, Int J Electrochem 2012, 271285 (2012). https://doi.org/10.1155/2012/271285

    Article  Google Scholar 

  60. D. Beke, Z. Szekrényes, Z. Czigány, K. Kamarása, Á. Gali, Nanoscale 7, 10982 (2015). https://doi.org/10.1039/C5NR01204J

    Article  ADS  Google Scholar 

  61. D. Dai, X. Guo, J. Fan, Appl. Phys. Lett. 106, 053115 (2015). https://doi.org/10.1063/1.4907674

    Article  ADS  Google Scholar 

  62. V. Nikas, S. Gallis, M. Huang, A.E. Kaloyeros, A.P.D. Nguyen, A. Stesmans, V.V. Afanas’ev, Appl. Phys. Lett. 104, 061906 (2014). https://doi.org/10.1063/1.4865100

    Article  ADS  Google Scholar 

  63. S. Gallis, V. Nikas, H. Suhag, M. Huang, A.E. Kaloyeros, Appl. Phys. Lett. 97, 081905 (2010). https://doi.org/10.1063/1.3482938

    Article  ADS  Google Scholar 

  64. Y. Dinga, H. Shiraib, J. Appl. Phys. 105, 043515 (2009). https://doi.org/10.1063/1.3080129

    Article  ADS  Google Scholar 

  65. Y. Ishikawa, K. Sato, S. Kawasaki, Y. Ishii, A. Matsumura, S. Muto, Phys. Status Solidi A (2012). https://doi.org/10.1002/pssa.201100816

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially financed by the National Academy of Sciences of Belarus under project Convergence 2.2.05 and by the Belarusian Foundation for Fundamental Research under Grants No. F21RM-105 and No. F21KOR-006. This work was also partially supported by EPSRC (award n. EP/M024938/1). The authors also acknowledge Dr. Aleksander Stupak for luminescence measurements, valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Tarasenko.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenka, N., Kornev, V., Rzheutski, M. et al. Fabrication of luminescent silicon carbide nanoparticles by pulsed laser synthesis in liquid. Appl. Phys. A 128, 749 (2022). https://doi.org/10.1007/s00339-022-05894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05894-2

Keywords

Navigation