Skip to main content
Log in

Enhancing both methylene blue photocatalytic degradation and ethanol sensing performances of ZnO/rGO nanocomposite through the variation of GO amount

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, mesoporous ZnO/reduced graphene oxide (rGO) nanocomposites were successfully synthesized using a facile and environment-friendly hydrothermal method. The ZnO/rGO nanocomposites were characterized through a broad range of characterization techniques such as X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis, Raman and photoluminescence spectroscopy. ZnO/rGO nanocomposites exhibited enhanced photocatalytic activity towards decomposing methylene blue (MB) dye under a low-power ultraviolet light (8 W). In these conditions an almost complete removal of dye (99.66%) was achieved within 100 min for the sample with more value of GO (compared to 78.36% for pure ZnO). We also explored the use of ZnO/rGO nanocomposites deposited on gold electrodes for the fabrication of ethanol vapor sensors. An excellent sensing ability was observed in its high response for the selected sample (110.11 toward 100 ppm ethanol vapor in comparison with 14.54 for pristine ZnO), very low response/recovery time (below 4 s), good selectivity and ultralow estimated detection limit of about 27 ppb which makes it a prospective use in gas sensors. As a result of the overall analysis, the formation of ZnO/rGO nanocomposite can considerably improve the photocatalytic and gas sensing properties of ZnO and thus can be used for various applications such as environmental considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.S. Mehta, D.Y. Nadargi, M.S. Tamboli, T. Alshahrani, V.R.M. Reddy, E.S. Kim, I.S. Mulla, C. Park, S.S. Suryavanshi, RGO/WO3 hierarchical architectures for improved H2S sensing and highly efficient solar-driving photo-degradation of RhB dye. Sci. Rep. 11, 5023 (2021). https://doi.org/10.1038/s41598-021-84416-1

    Article  ADS  Google Scholar 

  2. M. Siddique, N. Fayaz, M. Saeed, Synthesis, characterization, photocatalytic activity and gas sensing properties of zinc doped manganese oxide nanoparticles. Physica B 602, 412504 (2021). https://doi.org/10.1016/j.physb.2020.412504

    Article  Google Scholar 

  3. S. Kumar, R.D. Kaushik, L.P. Purohit, Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye. J. Mol. Liq. 327, 114814 (2021). https://doi.org/10.1016/j.molliq.2020.114814

    Article  Google Scholar 

  4. M. Zarrabi, M. Haghighi, R. Alizadeh, Sonoprecipitation dispersion of ZnO nanoparticles over graphene oxide used in photocatalytic degradation of methylene blue in aqueous solution: influence of irradiation time and power. Ultrason. Sonochem. 48, 370–382 (2018). https://doi.org/10.1016/j.ultsonch.2018.05.034

    Article  Google Scholar 

  5. S. Liang, J. Zhua, J. Dinga, H. Bia, P. Yaob, Q. Hana, X. Wang, Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol. Appl. Surf. Sci. 357, 1593–1600 (2015). https://doi.org/10.1016/j.apsusc.2015.10.033

    Article  ADS  Google Scholar 

  6. B.A. Vessalli, C.A. Zito, T.M. Perfecto, D.P. Volanti, T. Mazon, ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection. J. Alloys Compd. 696, 996–1003 (2017). https://doi.org/10.1016/j.jallcom.2016.12.075

    Article  Google Scholar 

  7. N.A.F. Al-Rawashdeh, O. Allabadi, M.T. Aljarrah, Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega 5, 28046–28055 (2020). https://doi.org/10.1021/acsomega.0c03608

    Article  Google Scholar 

  8. G. Liu, J. Ji, H. Huang, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, M. He, S. Liu, X. Ye, D.Y.C. Leung, UV/H2O2: an efficient aqueous advanced oxidation process for VOCs removal. Chem. Eng. J. 324, 44–50 (2017). https://doi.org/10.1016/j.cej.2017.04.105

    Article  Google Scholar 

  9. Q. Sun, Y. Hong, Q. Liu, L. Dong, Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2. Appl. Surf. Sci. 430, 399–406 (2018). https://doi.org/10.1016/j.apsusc.2017.08.085

    Article  ADS  Google Scholar 

  10. D. Wen, Z. Wu, Y. Tang, M. Li, Z. Qiang, Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: impact of sulfamethazine concentration on reaction mechanism. J. Hazard. Mater. 344, 1181–1187 (2018). https://doi.org/10.1016/j.jhazmat.2017.10.032

    Article  Google Scholar 

  11. H. Zhu, Y. Han, W. Ma, H. Han, W. Ma, Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR). Bioresour. Technol. 245, 786–793 (2017). https://doi.org/10.1016/j.biortech.2017.09.029

    Article  Google Scholar 

  12. H. Ramezanalizadeh, F. Manteghi, Synthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutants. J. Cleaner Prod. 172, 2655–2666 (2018). https://doi.org/10.1016/j.jclepro.2017.11.145

    Article  Google Scholar 

  13. Y. Lin, R. Hong, H. Chen, D. Zhang, J. Xu, Green synthesis of ZnO-GO composites for the photocatalytic degradation of methylene blue. J. Nanomater. 2020, 4147357 (2020). https://doi.org/10.1155/2020/4147357

    Article  Google Scholar 

  14. C.H. Nguyen, M.L. Tran, T.T. Van Tran, R.S. Juang, Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 232, 115962 (2020). https://doi.org/10.1016/j.seppur.2019.115962

    Article  Google Scholar 

  15. D.B. Patil, V.L. Patil, S.S. Patil, T.D. Dongale, N.D. Desai, P.R. Patil, R.M. Mane, P.N. Bhosale, P.S. Patil, P.M. Kadam, K.V. Khot, Facile synthesis of MoO3 nanoplates based NO2 gas sensor: ultra-selective and sensitive. Chem. Phys. Lett. 782, 139025 (2021). https://doi.org/10.1016/j.cplett.2021.139025

    Article  Google Scholar 

  16. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 143 (2017). https://doi.org/10.1186/s11671-017-1904-4

    Article  ADS  Google Scholar 

  17. A.B. Khatibani, Investigation of gas sensing property of zinc oxide thin films deposited by sol-gel method: effects of molarity and annealing temperature. Indian J. Phys. 95, 243 (2021). https://doi.org/10.1007/s12648-020-01689-4

    Article  ADS  Google Scholar 

  18. B. Xue, Y. Zou, High photocatalytic activity of ZnO–graphene composite. J. Colloid Interface Sci. 529, 306–313 (2018). https://doi.org/10.1016/j.jcis.2018.04.040

    Article  ADS  Google Scholar 

  19. R.T. Ngaloy, A.M. Fontanilla, M.S.R. Soriano, C.S. Pascua, Y. Matsushita, I.J.A. Agulo, Highly efficient photocatalysis by zinc oxide-reduced graphene oxide (ZnO-rGO) composite synthesized via one-pot room-temperature chemical deposition method. J. Nanotechnol. 2019, 1895043 (2019). https://doi.org/10.1155/2019/1895043

    Article  Google Scholar 

  20. Z. Kalantari Bolaghi, S.M. Masoudpanah, M. Hasheminiasari, Photocatalytic activity of ZnO/RGO composite synthesized by one-pot solution combustion method. Mater. Res. Bull. 115, 191–195 (2019). https://doi.org/10.1016/j.materresbull.2019.03.024

    Article  Google Scholar 

  21. C.I. Rodwihok, D. Wongratanaphisan, Y.L.T. Ngo, M. Khandelwal, S.H. Hur, J.S. Chung, Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic pctivity. Nanomaterials 9, 1441 (2019). https://doi.org/10.3390/nano9101441

    Article  Google Scholar 

  22. A. Bagheri Khatibani, A. Shabankhah, Fabrication and ethanol sensing of sol–gel grown zinc oxide powder: the effect of cobalt and copper doping. Appl. Phys. A 127(5), 1–11 (2021). https://doi.org/10.1007/s00339-021-04445-5

    Article  Google Scholar 

  23. A. Bagheri Khatibani, characterization and ethanol sensing performance of sol–gel derived pure and doped zinc oxide thin films. J. Electron. Mater. 48, 3784–3793 (2019). https://doi.org/10.1007/s11664-019-07101-0

    Article  ADS  Google Scholar 

  24. P. Li, Z. Wei, T. Wu, Q. Peng, Y.D. Li, Au−ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133(15), 5660–5663 (2011). https://doi.org/10.1021/ja111102u

    Article  Google Scholar 

  25. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49, 11–18 (2011). https://doi.org/10.1016/j.carbon.2010.08.030

    Article  Google Scholar 

  26. K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst. Chem. Eng. J. 191, 571–578 (2012). https://doi.org/10.1016/j.cej.2012.03.008

    Article  Google Scholar 

  27. S. Nejatinia, S. Khadem Charvadeh, A. Bagheri Khatibani, The effect of graphene and cobalt on ethanol sensing performance of ZnO based sensor prepared by sol-gel method. Jpn. J. Appl. Phys. 61, 17001 (2022). https://doi.org/10.35848/1347-4065/ac3ea8

    Article  Google Scholar 

  28. Z. Durmus, B.Z. Kurt, A. Durmus, Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. Chem. Select. 4, 271–278 (2019). https://doi.org/10.1002/slct.201803635

    Article  Google Scholar 

  29. R. Ashouri, P. Ghasemipoor, B. Rasekh, F. Yazdian, S.R. Mofradnia, The effect of ZnO - based carbonaceous materials for degradation of benzoic pollutants: a review. Int. J. Environ. Sci. Technol. 16, 1729–1740 (2019). https://doi.org/10.1007/s13762-018-2056-5

    Article  Google Scholar 

  30. C. Luo, C. Hou, Q. Zhang, Y. Li, H. Wang, A noise-reduced broad-spectrum photodetector based on reagent-free electrophoretic assembled flexible ZnO/rGO films. Appl. Surf. Sci. 469, 113–117 (2019). https://doi.org/10.1016/j.apsusc.2018.11.012

    Article  ADS  Google Scholar 

  31. J. He, C. Niu, C. Yang, J. Wang, X. Su, Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing property. RSC Adv. 4, 60253–60259 (2014). https://doi.org/10.1039/C4RA12707B

    Article  ADS  Google Scholar 

  32. J. Qin, X. Zhang, C. Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 392, 196–203 (2017). https://doi.org/10.1016/j.apsusc.2016.09.043

    Article  ADS  Google Scholar 

  33. W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl. Surf. Sci. 299, 12–18 (2014). https://doi.org/10.1016/j.apsusc.2014.01.170

    Article  ADS  Google Scholar 

  34. Y. Liu, Y. Hu, M. Zhou, H. Qian, X. Hu, Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B. Environ. 125, 425–431 (2012). https://doi.org/10.1016/j.apcatb.2012.06.016

    Article  Google Scholar 

  35. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6, 307–312 (2010). https://doi.org/10.1002/smll.200901968

    Article  Google Scholar 

  36. R. Karthik, S. Thambidurai, Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. J. Alloys Compd. 715, 254–265 (2017). https://doi.org/10.1016/j.jallcom.2017.04.298

    Article  Google Scholar 

  37. S. Sagadevan, J.A. Lett, G.K. Weldegebrieal, W.C. Oh, S.F. Alshahateet, I. Fatimah, F. Mohammad, H.A. Al-Lohedan, S. Paiman, J. Podder, M.R. Johan, Enhanced gas sensing and photocatalytic activity of reduced graphene oxide loaded TiO2 nanoparticles. Chem. Phys. Lett. 780, 138897 (2021). https://doi.org/10.1016/j.cplett.2021.138897

    Article  Google Scholar 

  38. S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, U. Fatima, Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos. B. Eng. 175, 107120 (2019). https://doi.org/10.1016/j.compositesb.2019.107120

    Article  Google Scholar 

  39. A.B. Khatibani, M. Abbasi, Effect of Fe and Co doping on ethanol sensing property of powder-based ZnO nanostructures prepared by sol–gel method. J. Sol-Gel Sci. Technol. 86, 255–265 (2018). https://doi.org/10.1007/s10971-018-4629-7

    Article  Google Scholar 

  40. H. Naderi, S. Hajati, M. Ghaedi, K. Dashtian, M.M. Sabzehmeidani, Sensitive, selective and rapid ammonia-sensing by gold nanoparticle-sensitized V2O5/CuWO4 heterojunctions for exhaled breath analysis. Appl. Surf. Sci. 501, 144270 (2020). https://doi.org/10.1016/j.apsusc.2019.144270

    Article  Google Scholar 

  41. S.F. Hashemi Karouei, H. Milani Moghaddam, S. Saadat Niavol, Characterization and gas sensing properties of graphene/polyaniline nanocomposite with long-term stability under high humidity. J. Mater. Sci. 56, 4239–4253 (2021). https://doi.org/10.1007/s10853-020-05532-3

    Article  ADS  Google Scholar 

  42. C. Wang, N. Li, Q. Wang, Z. Tang, Hybrid nanomaterials based on graphene and gold nanoclusters for efficient electrocatalytic reduction of oxygen. Nanoscale Res. Lett. 11, 1–7 (2016). https://doi.org/10.1186/s11671-016-1552-0

    Article  ADS  Google Scholar 

  43. L. Zhihua, Z. Xucheng, W. Kun, Z. Xiaobo, S. Jiyong, H. Xiaowei, M. Holmes, A novel sensor for determination of dopamine in meat based on ZnO-decorated reduced graphene oxide composites. Innov. Food Sci. Emerg. Technol. (2015). https://doi.org/10.1016/j.ifset.2015.06.011

    Article  Google Scholar 

  44. A. Kar, S. Kundu, A. Patra, Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J. Phys. Chem. C 115, 118–124 (2011). https://doi.org/10.1021/jp110313b

    Article  Google Scholar 

  45. H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Kho, S.H. Hahn, J.S. Chung, E.W. Shin, S.H. Hur, One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst. Chem. Eng. J. 229, 126–133 (2013). https://doi.org/10.1016/j.cej.2013.05.110

    Article  Google Scholar 

  46. N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications. J. Inorg. Chem. 11, 1912–1923 (2015). https://doi.org/10.1002/ejic.201403172

    Article  Google Scholar 

  47. D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017). https://doi.org/10.1016/j.jallcom.2017.01.070

    Article  Google Scholar 

  48. Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L. Wang, H. Fu, A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. J. Mater. Chem. 22, 11778–11784 (2012). https://doi.org/10.1039/C2JM31401K

    Article  Google Scholar 

  49. F.M. Chang, S. Brahma, J.H. Huang, Z.Z. Wu, K.Y. Lo, Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods. Sci. Rep. 9, 905 (2019). https://doi.org/10.1038/s41598-018-37601-8

    Article  ADS  Google Scholar 

  50. A.S.M.I. Uddin, G.-S. Chung, Synthesis of highly dispersed ZnO nanoparticles on graphene surface and their acetylene sensing properties. Sens. Actuators B 205, 338–344 (2014). https://doi.org/10.1016/j.snb.2014.09.005

    Article  Google Scholar 

  51. R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865–869 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016

    Article  ADS  Google Scholar 

  52. B. Sukluan, P. Nakarungsee, G.S. Chen, W. Samanjit, V. Krongtong, I.M. Tang, S. Thongmee, Effect of aluminum-doping on the photoluminescence of ZnO nanorods. Adv. Sci. Eng. 7, 216–222 (2015). https://doi.org/10.1166/asem.2015.1678

    Article  Google Scholar 

  53. A. Nandi, R. Majumder, P. Nag, S.K. Datta, H. Saha, S. Majumdar, Precursor dependent tailoring of morphology and bandgap of zinc oxide nanostructures. J. Mater. Sci. Mater. Electron. 28, 10885–10892 (2017). https://doi.org/10.1007/s10854-017-6867-9

    Article  Google Scholar 

  54. B.K. Pandey, A.K. Shahi, R. Gopal, Magnetic colloid by PLA: optical, magnetic and thermal transport properties. Appl. Surf. Sci. 347, 461–470 (2015). https://doi.org/10.1016/j.apsusc.2015.04.045

    Article  ADS  Google Scholar 

  55. V. Khorramshahi, J. Karamdel, R. Yousefi, High acetic acid sensing performance of Mg-doped ZnO/rGO nanocomposites. Ceram. Int. 45(6), 7034–7043 (2019). https://doi.org/10.1016/j.ceramint.2018.12.205

    Article  Google Scholar 

  56. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016). https://doi.org/10.1038/srep36143

    Article  ADS  Google Scholar 

  57. S. Safa, R. Sarraf-Mamoory, R. Azimirad, Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. Physica E 57, 155–160 (2014). https://doi.org/10.1016/j.physe.2013.10.029

    Article  ADS  Google Scholar 

  58. G. Ahmed, M. Hanif, L. Zhao, M. Hussain, J. Khan, Z. Liu, Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis. J. Mol. Catal. A: Chem. 425, 310–321 (2016). https://doi.org/10.1016/j.molcata.2016.10.026

    Article  Google Scholar 

  59. S. Duo, Y. Li, Z. Liu, R. Zhong, T. Liu, H. Xu, Preparation of ZnO from 2D nanosheets to diverse 1D nanorods and their structure, surface area, photocurrent, optical and photocatalytic properties by simple hydrothermal synthesis. J. Alloy. Compd. 695, 2563–2579 (2016). https://doi.org/10.1016/j.jallcom.2016.11.162

    Article  Google Scholar 

  60. D. Heger, J. Jirkovsky, P. Klán, Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy. J. Phys. Chem. A 109, 6702–6709 (2005). https://doi.org/10.1021/jp050439j

    Article  Google Scholar 

  61. B. Li, T. Liu, L. Hu, Y. Wang, A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant. J. Phys. Chem. Solid 74, 635–640 (2013). https://doi.org/10.1016/j.jpcs.2012.12.020

    Article  ADS  Google Scholar 

  62. M. Darvishi, Gh. Mohseni, J. Seyed-Yazdi, Simple microwave irradiation procedure for the synthesis of CuO/Graphene hybrid composite with significant photocatalytic enhancement. Surf. Interfaces 7, 69–73 (2017). https://doi.org/10.1016/j.surfin.2017.02.007

    Article  Google Scholar 

  63. K. Huang, Y.H. Zhou, S. Lin, C. Liang, X. Xu, Y.F. Zhou, D.Y. Fan, H.J. Yang, P.L. Lang, R. Zhang, Y.G. Wang, M. Lei, One-step synthesis of reduced graphene oxide–CeO2 nanocubes composites with enhanced photocatalytic activity. Mater. Lett. 124, 223–226 (2014). https://doi.org/10.1016/j.matlet.2014.03.023

    Article  Google Scholar 

  64. A. Mishra, A. Panigrahi, P. Mal, S. Penta, G. Padmaja, G. Bera, P. Das, P. Rambabu, G.R. Turpu, Rapid photodegradation of methylene blue dye by rGO-V2O5 nano composite. J. Alloy. Comp. 842, 155746 (2020). https://doi.org/10.1016/j.jallcom.2020.155746

    Article  Google Scholar 

  65. S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation. J. Photochem. Photobiol. B Biol. 159, 111–119 (2016). https://doi.org/10.1016/j.jphotobiol.2016.03.025

    Article  Google Scholar 

  66. E. Kusiak-Nejman, A. Wanag, J. Kapica- Kozar, Ł Kowalczyk, M. Zgrzebnicki, B. Tryba, J. Przepiorski, A.W. Morawski, Methylene blue decomposition on TiO2/ reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catal. Today 357, 630–637 (2019). https://doi.org/10.1016/j.cattod.2019.04.078

    Article  Google Scholar 

  67. T.A. Kurniawan, Z. Mengting, D. Fu, S.K. Yeap, M.H.D. Othman, R. Avtar, T. Ouyang, Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J. Environ. Manag. 270, 110871 (2020). https://doi.org/10.1016/j.jenvman.2020.110871

    Article  Google Scholar 

  68. B.K. Sahu, R.N. Juine, M. Sahoo, R. Kumar, A. Das, Interface of GO with SnO2 quantum dots as an efficient visible-light photocatalyst. Chemosphere 276, 130142 (2021). https://doi.org/10.1016/j.chemosphere.2021.130142

    Article  ADS  Google Scholar 

  69. L. Tang, V.H. Nguyen, Y.R. Lee, J. Kim, J.-J. Shim, Photocatalytic activity of reduced graphene oxide/SnO2 nanocomposites prepared in ionic liquid. Synth. Met. 201, 54–60 (2015). https://doi.org/10.1016/j.synthmet.2015.01.018

    Article  Google Scholar 

  70. A. Henni, N. Harfouche, A. Karar, D. Zerrouki, F.X. Perrin, F. Rosei, Synthesis of graphene–ZnO nanocomposites by a one-step electrochemical deposition for effcient photocatalytic degradation of organic pollutant. Solid State Sci. 98, 106039 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106039

    Article  Google Scholar 

  71. B. Mandal, J. Panda, P.K. Paul, R. Sarkar, B. Tudu, MnFe2O4 decorated reduced graphene oxide heterostructures: nanophotocatalyst for methylene blue dye degradation. Vacuum 173, 109150 (2020). https://doi.org/10.1016/j.vacuum.2019.109150

    Article  ADS  Google Scholar 

  72. K. Ravichandran, R. Uma, S. Sriram, D. Balamurgan, Fabrication of ZnO:Ag/GO composite thin films for enhanced photocatalytic activity. Ceram. Int. 43, 10041–10051 (2017). https://doi.org/10.1016/j.ceramint.2017.05.020

    Article  Google Scholar 

  73. A. Bagheri Khatibani, M. Abbasi, Comparison of gas sensing properties of spray pyrolysed VOx thin films. J. Mater. Sci. Mater. Electron. 26, 5052–5059 (2015). https://doi.org/10.1007/s10854-015-3026-z

    Article  Google Scholar 

  74. Z. Feng, C. Gao, X. Ma, J. Zhan, Well-dispersed Pd nanoparticles on porous ZnO nanoplates via surface ion exchange for chlorobenzene-selective sensor. RSC Adv. 9, 42351–42359 (2019). https://doi.org/10.1039/c9ra09705h

    Article  ADS  Google Scholar 

  75. V.V. Quang, N.V. Dung, N.S. Trong, N.D. Hoa, N.V. Duy, N.V. Hieu, Outstanding gas-sensing performance of grapheme/SnO2 nanowire schottky junctions. Appl. Phys. Lett. 105, 013107 (2014). https://doi.org/10.1063/1.4887486

    Article  ADS  Google Scholar 

  76. S.M. Liang, J.W. Zhu, C. Wang, S.T. Yu, H.P. Bi, X.H. Liu, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014). https://doi.org/10.1016/j.apsusc.2013.11.130

    Article  ADS  Google Scholar 

  77. P. Xue, X. Yang, X. Lai, W. Xia, P. Li, J. Fang, Controlling synthesis and gas-sensing properties of ordered mesoporous In2O3-reduced graphene oxide (rGO) nanocomposite. Sci. Bull. 60(15), 1348–1354 (2015). https://doi.org/10.1007/s11434-015-0852-6

    Article  Google Scholar 

  78. S. Xu, F. Sun, S. Yang, Z. Pan, J. Long, F. Gu, Fabrication of SnO2-reduced graphite oxide monolayer-ordered porous film gas sensor with tunable sensitivity through ultra-violet light irradiation. Sci. Rep. 5, 1–8 (2015). https://doi.org/10.1038/srep08939

    Article  Google Scholar 

  79. S. Xu, F. Sun, Z. Pan, C. Huang, S. Yang, J. Long, Y. Chen, Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl. Mater. Interfaces 8, 3428–3437 (2016). https://doi.org/10.1021/acsami.5b11607

    Article  Google Scholar 

  80. A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B 244, 466–474 (2017). https://doi.org/10.1016/j.snb.2017.01.015

    Article  Google Scholar 

  81. C.S. Reddy, G. Murali, A.S. Reddy, S. Park, I. In, GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres. J. Alloys Compd. 813, 152251 (2020). https://doi.org/10.1016/j.jallcom.2019.152251

    Article  Google Scholar 

  82. X. Liu, J. Liu, Q. Liu, R. Chen, H. Zhang, J. Yu, D. Song, J. Li, M. Zhang, J. Wang, Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor. Ceram. Int. 44, 21091–21098 (2018). https://doi.org/10.1016/j.ceramint.2018.08.146

    Article  Google Scholar 

  83. M. Tian, J. Miao, P. Cheng, H. Mu, J. Tu, J. Sun, Layer-by-layer nanocomposites consisting of Co3O4 and reduced graphene (rGO) nanosheets for high selectivity ethanol gas sensors. Appl. Surf. Sci. 479, 601–607 (2019). https://doi.org/10.1016/j.apsusc.2019.02.148

    Article  ADS  Google Scholar 

  84. Z. Tang, X. Deng, Y. Zhang, X. Guo, J. Yang, C. Zhu, J. Fan, Y. Shi, B. Qing, F. Fan, MoO3 nanoflakes coupled reduced graphene oxide with enhanced ethanol sensing performance and mechanism. Sens. Actuators B 297, 126730 (2019). https://doi.org/10.1016/j.snb.2019.126730

    Article  Google Scholar 

  85. R. Zou, G. He, K. Xu, Q. Liu, Z. Zhang, J. Hu, ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1, 8445–8452 (2013). https://doi.org/10.1039/C3TA11490B

    Article  Google Scholar 

  86. F. Meng, Y. Chang, W. Qin, Z. Yuan, J. Zhao, J. Zhang, E. Han, S. Wang, M. Yang, Y. Shen, M. Ibrahim, ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2, 2734–2742 (2019). https://doi.org/10.1021/acsanm.9b00257

    Article  Google Scholar 

  87. F. Dang, Y. Wang, J. Gao, L. Xu, P. Cheng, L. Lv, B. Zhang, X. Li, C. Wang, Hierarchical flower-like NiCo2O4 applied in n-butanol detection at low temperature. Sens. Actuators B Chem. 320, 128577 (2020). https://doi.org/10.1016/j.snb.2020.128577

    Article  Google Scholar 

  88. Z.U. Abideen, J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuators, B Chem. 255, 1884–1896 (2018). https://doi.org/10.1016/j.snb.2017.08.210

    Article  Google Scholar 

  89. S.S. Niavol, H.M. Moghaddam, SnO2 nanoparticles/reduced graphene oxide nanocomposite for fast ethanol vapor sensing at a low operating temperature with an excellent long-term stability. J. Mater. Sci.-Mater. Electron. 32, 6550–6569 (2021). https://doi.org/10.1007/s10854-021-05372-0

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Saadat Niavol.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat Niavol, S., Milani Moghaddam, H., Bagheri Khatibani, A. et al. Enhancing both methylene blue photocatalytic degradation and ethanol sensing performances of ZnO/rGO nanocomposite through the variation of GO amount. Appl. Phys. A 128, 733 (2022). https://doi.org/10.1007/s00339-022-05890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05890-6

Keywords

Navigation