Skip to main content
Log in

Structural, morphological, electrical, and magnetic characteristics of 20MnFe2O4-80SiO2 nanocomposite synthesized by the one-pot auto-combustion route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report an investigation of the structural, morphological, the ac-dc electrical, magnetic, and Mössbauer spectroscopy properties of 20MnFe2O4-80SiO2 nanocomposite prepared using a one-step and facile auto-combustion approach. XRD pattern shows the formation of MnFe2O4 nanocrystallite without any crystallization of the SiO2 phase. However, the presence of a secondary phase of the nanosized α-Fe2O3 particles was also detected. The morphological analysis showed aggregation of polygonal magnetic nano-crystallites dispersed non-uniformly in a silica matrix. The dc electrical measurements performed on a wide range of temperatures from 120 to 400 K showed the semiconducting nature of the nanocomposite. The temperature dependence of dc conductivity could be perfectly fitted to the nearest neighborhood hopping model with activation energy, ΔENNH, of 0.45 eV. The Nyquist plots demonstrated a nonmonotonous thermally activated trend and non-Debye relaxation behavior. An equivalent circuit was successfully fitted to the complex impedance spectra. The variation of both grain and grain boundary conductivities as a function of temperature exhibited three distinct regions, semiconducting-metallic-semiconducting with different activation energies over the measured temperature window. The provided description of such behavior is further advocated by the ac conductivity and dielectric modulus studies. VSM measurements revealed that the nanocomposite magnetic behavior deviates from the ideal non-interacting superparamagnetic picture, due to the presence of α-Fe2O3 nanocrystalline impurities and relatively intensive exchange interactions between ions. Mössbauer spectra showed the presence of Fe3+ ions with sixfold environment and also confirmed the existence of a sextet related to α-Fe2O3 with a quantity of about 20% out of magnetic components. Fe3+ superparamagnetic doublets were also found within the fitting procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.A. Salehizadeh, N.M. Ferreira, M.S. Ivanov, V.A. Khomchenko, J.A. Paixão, F.M. Costa, M.A. Valente, M.P.F. Graça, Mater. Res. Bull. 131, 110972 (2020)

    Google Scholar 

  2. Aakash, R. Choubey, D. Das, S. Mukherjee, J. Alloys Compd. 668, 33 (2016)

    Google Scholar 

  3. J.R. Huang, C. Cheng, J. Appl. Phys. 113, 33912 (2013)

    Google Scholar 

  4. R.-R. Gao, Y. Zhang, W. Yu, R. Xiong, J. Shi, J. Magn. Magn. Mater. 324, 2534 (2012)

    ADS  Google Scholar 

  5. Z. Wang, Z. Li, Y. Zhang, R. Zhang, P. Qin, C. Chen, L. Winnubst, Ceram. Int. 40, 4875 (2014)

    Google Scholar 

  6. S. Güner, M. Amir, M. Geleri, M. Sertkol, A. Baykal, Ceram. Int. 41, 10915 (2015)

    Google Scholar 

  7. Z.Ž Lazarević, Č Jovalekić, A. Recnik, V.N. Ivanovski, M. Mitrić, M.J. Romčević, N. Paunović, B.D. Cekić, N.Ž Romčević, J. Alloys Compd. 509, 9977 (2011)

    Google Scholar 

  8. K. Vamvakidis, M. Katsikini, D. Sakellari, E.C. Paloura, O. Kalogirou, C. Dendrinou-Samara, Dalt. Trans. 43, 12754 (2014)

    Google Scholar 

  9. M. Harada, M. Kuwa, R. Sato, T. Teranishi, M. Takahashi, S. Maenosono, A.C.S. Appl, Nano Mater. 3, 8389 (2020)

    Google Scholar 

  10. M.A. Cobos, P. de la Presa, I. Llorente, J.M. Alonso, A. García-Escorial, P. Marín, A. Hernando, J.A. Jiménez, J. Phys. Chem. C 123, 17472 (2019)

    Google Scholar 

  11. M. Siddique, N.M. Butt, Phys. B Condens. Matter 405, 4211 (2010)

    ADS  Google Scholar 

  12. L.I. Granone, A.C. Ulpe, L. Robben, S. Klimke, M. Jahns, F. Renz, T.M. Gesing, T. Bredow, R. Dillert, D.W. Bahnemann, Phys. Chem. Chem. Phys. 20, 28267 (2018)

    Google Scholar 

  13. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19, 210 (2017)

    Google Scholar 

  14. A. Baykal, S. Esir, A. Demir, S. Güner, Ceram. Int. 41, 231 (2015)

    Google Scholar 

  15. S.A. Salehizadeh, M.P.F. Graça, M.A. Valente, Phys. Status Solidi Curr. Top. Solid State Phys. (2014). https://doi.org/10.1002/pssc.201400015

    Article  Google Scholar 

  16. S. Baraghani, Z. Barani, Y. Ghafouri, A. Mohammadzadeh, T.T. Salguero, F. Kargar, A.A. Balandin, ACS Nano (2022). https://doi.org/10.1021/acsnano.2c00378

    Article  Google Scholar 

  17. Seema, S. Rohilla, AIP Conf. Proc. (2020). https://doi.org/10.1021/nl034816k

    Article  Google Scholar 

  18. C.R. Vestal, Z.J. Zhang, Nano Lett. 3, 1739 (2003)

    ADS  Google Scholar 

  19. C. Caparrós, M. Benelmekki, P.M. Martins, E. Xuriguera, C.J.R. Silva, L.M. Martinez, S. Lanceros-Méndez, Mater. Chem. Phys. 135, 510 (2012)

    Google Scholar 

  20. M. Nakhaei, D.S. Khoshnoud, J. Mater. Sci. Mater. Electron. 32, 14286 (2021)

    Google Scholar 

  21. M. Stoia, C. Caizer, M. Ştefănescu, P. Barvinschi, L. Barbu-Tudoran, J. Sol-Gel Sci. Technol. 58, 126 (2011)

    Google Scholar 

  22. S.A. Salehizadeh, B.F.O. Costa, P. Sanguino, V.H. Rodrigues, J-M. Greneche, A. Cavaleiro, M.A. Valente, Mater. Sci. Eng. B. (2022). https://doi.org/10.1016/j.mseb.2022.115902

    Article  Google Scholar 

  23. R. Zamiri, H. Mahmoudi Chenari, H.F. Moafi, M. Shabani, S.A. Salehizadeh, A. Rebelo, J.S. Kumar, M.P.F. Graça, M.J. Soares, J.M.F. Ferreira, Ceram. Int. 42, 12860 (2016)

    Google Scholar 

  24. S.A. Salehizadeh, B.M.G. Melo, F.N.A. Freire, M.A. Valente, M.P.F. Graça, J. Non. Cryst. Solids 443, 65 (2016)

    ADS  Google Scholar 

  25. A.M. Jubb, H.C. Allen, A.C.S. Appl, Mater. Interfaces 2, 2804 (2010)

    Google Scholar 

  26. I. Chamritski, G. Burns, J. Phys. Chem. B 109, 4965 (2005)

    Google Scholar 

  27. Y. Zhou, B. Xiao, S.-Q. Liu, Z. Meng, Z.-G. Chen, C.-Y. Zou, C.-B. Liu, F. Chen, X. Zhou, Chem. Eng. J. 283, 266 (2016)

    Google Scholar 

  28. M.A.G. Soler, T.F.O. Melo, S.W. Da Silva, E.C.D. Lima, A.C.M. Pimenta, V.K. Garg, A.C. Oliveira, P.C. Morais, J. Magn. Magn. Mater. 272–276, 2357 (2004)

    ADS  Google Scholar 

  29. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011)

    ADS  Google Scholar 

  30. D. Varshney, K. Verma, A. Kumar, Mater. Chem. Phys. 131, 413 (2011)

    Google Scholar 

  31. D. Souri, Z.E. Tahan, S.A. Salehizadeh, Indian J. Phys. 90, 407 (2016)

    ADS  Google Scholar 

  32. S. Balamurugan, M.D. Devi, I. Prakash, S. Devaraj, Appl. Surf. Sci. 449, 542 (2018)

    ADS  Google Scholar 

  33. J.M.D. Coey, Magnetism and magnetic materials (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  34. H. Zheng, W. Weng, G. Han, P. Du, J. Phys. Chem. C 117, 12966 (2013)

    Google Scholar 

  35. R. Zamiri, S.A. Salehizadeh, H.A. Ahangar et al., Dielectric and optical properties of Ni- and Fe-doped CeO2 Nanoparticles. Appl Phys A Mater Sci Process (2019). https://doi.org/10.1007/S00339-019-2689-3

    Article  Google Scholar 

  36. K. Nadeem, F. Zeb, M. Azeem Abid, M. Mumtaz, M. Anis Ur Rehman, J. Non. Cryst. Solids 400, 45 (2014)

    ADS  Google Scholar 

  37. R.A. Lunt, A.J. Jackson, A. Walsh, Chem. Phys. Lett. 586, 67 (2013)

    ADS  Google Scholar 

  38. S.A. Saafan, S.T. Assar, J. Magn. Magn. Mater. 324, 2989 (2012)

    ADS  Google Scholar 

  39. C. Behera, R.N.P. Choudhary, P.R. Das, Ceram. Int. 41, 13042 (2015)

    Google Scholar 

  40. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 52105 (2002)

    ADS  Google Scholar 

  41. E. Veena Gopalan, K.A. Malini, S. Saravanan, D. Sakthi Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D. Appl. Phys. 41, 185005 (2008)

    ADS  Google Scholar 

  42. J. Kolte, P.H. Salame, A.S. Daryapurkar, P. Gopalan, AIP Adv. 5, 097164 (2015)

    ADS  Google Scholar 

  43. S.A. Salehizadeh, H.M. Chenari, M. Shabani, H.A. Ahangar, R. Zamiri, A. Rebelo, J.S. Kumar, M.P.F. Graça, J.M.F. Ferreira, RSC Adv. 8, 2100 (2018)

    ADS  Google Scholar 

  44. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3582142

    Article  Google Scholar 

  45. J.B. Goodenough, Phys. Rev. 117, 1442 (1960)

    ADS  Google Scholar 

  46. J. Jacob, M.A. Khadar, J. Appl. Phys. 107, 114310 (2010)

    ADS  Google Scholar 

  47. E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, J. Alloys Compd. 726, 187 (2017)

    Google Scholar 

  48. R. Zamiri, S.A. Salehizadeh, H.A. Ahangar, M. Shabani, A. Rebelo, J. Suresh Kumar, M.J. Soares, M.A. Valente, J.M.F. Ferreira, Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2017.01.066

    Article  Google Scholar 

  49. P. Tiberto, G. Barrera, F. Celegato, M. Coïsson, A. Chiolerio, P. Martino, P. Pandolfi, P. Allia, Eur. Phys. J. B 86, 173 (2013)

    ADS  Google Scholar 

  50. E.C. Mendonça, C.B.R. Jesus, W.S.D. Folly, C.T. Meneses, J.G.S. Duque, A.A. Coelho, J. Appl. Phys. 111, 53917 (2012)

    ADS  Google Scholar 

  51. R.E. Vandenberghe, E. De Grave, Application of Mössbauer spectroscopy Earth sciences, in Mössbauer spectroscopy. ed. by Y. Yoshida, G. Langouche (Springer Berlin Heidelberg, Berlin, 2013), pp. 91–185

    Google Scholar 

Download references

Acknowledgements

The authors thank FEDER funds through the COMPETE 2020 Program and National Funds through FCT—Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013 and UID/FIS/04564/2016. This work was also supported by funds from FEDER (Programa Operacional Factores de Competitividade COMPETE) and from FCT-Fundação para a Ciência e a Tecnologia under the Project No. UID/FIS/04564/2016. This research also is sponsored by FEDER funds through the program COMPETE and by national funds through FCT, under the project UIDB/00285/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Salehizadeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehizadeh, S.A., Costa, B.F.O., Rodrigues, V.H. et al. Structural, morphological, electrical, and magnetic characteristics of 20MnFe2O4-80SiO2 nanocomposite synthesized by the one-pot auto-combustion route. Appl. Phys. A 128, 812 (2022). https://doi.org/10.1007/s00339-022-05876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05876-4

Keywords

Navigation