Skip to main content
Log in

Study of the dynamic wetting behavior of Sn droplet impacting Cu substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The spreading and wetting behavior of metal droplets impacting substrate surface has an important influence on the quality of jet forming, additive manufacturing, and other products. Nonetheless, due to the high speed and complexity of the impact process, there are few studies on the impact behavior of metal droplet impacting metal substrate. In this paper, the dynamic wetting behavior of Sn droplet impinging on Cu substrate is studied by simulation and experiment. Numerical simulation uses CLSVOF method to establish a single droplet of tin impact on cold copper substrate (temperature below 230 ℃) model. The effects of substrate temperature (50–200 ℃), droplet impact velocity (1–6 m/s) and substrate average roughness (0.05 μm, 0.1 μm, 0.5 μm, 1 μm, and smooth surface) on droplet spreading behavior were investigated. The spreading and wetting behavior of the single droplet liquid impinging on a cold copper substrate was studied by a high-speed camera. The results show that the substrate temperature has a great influence on the droplet spreading process and the final spreading factor but has little influence on the final contact angle. The droplet impact velocity has a great influence on the droplet spreading process, the final spreading factor, and the final contact angle. The average surface roughness of the substrate has little effect on the whole spreading process, but the final contact angle decreases first and then increases with the increase of surface roughness. The results reflect the morphology change of the droplet spreading solidification process, and explain the dynamic wetting state of the droplet spreading more directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Vardelle, C. Moreau, J. Akedo et al., The 2016 thermal spray roadmap. J. Therm. Spray Technol. 25(8), 1376–1440 (2016)

    Article  ADS  Google Scholar 

  2. M.R. Dorfman, A. Sharma, Challenges and strategies for growth of thermal spray markets: the six-pillar plan. J. Therm. Spray Technol. 22(5), 559–563 (2013)

    Article  ADS  Google Scholar 

  3. K.A. Khor, L.G. Yu, Global research trends in thermal sprayed coatings technology analyzed with bibliometrics tools. J. Therm. Spray Technol. 24(8), 1346–1354 (2015)

    Article  ADS  Google Scholar 

  4. K. Takagi, S. Masuda, H. Suzuki et al., Preparation of monosized copper micro particles by pulsated orifice ejection method. Mater. Trans. 47(5), 1380–1385 (2006)

    Article  Google Scholar 

  5. S. Zhong, L. Qi, J. Luo et al., Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J. Mater. Process. Technol. 214(12), 3089–3097 (2014)

    Article  Google Scholar 

  6. A. Miura, W. Dong, M. Fukue et al., Preparation of Fe-based monodisperse spherical particles with fully glassy phase. J. Alloy. Compd. 509(18), 5581–5586 (2011)

    Article  Google Scholar 

  7. S. Masuda, K. Takagi, W. Dong et al., Solidification behavior of falling germanium droplets produced by pulsated orifice ejection method. J. Cryst. Growth 310(11), 2915–2922 (2008)

    Article  ADS  Google Scholar 

  8. C.W. Visser, R. Pohl, C. Sun et al., Toward 3D printing of pure metals by laser-induced forward transfer. Adv. Mater. 27(27), 4087–4092 (2015)

    Article  Google Scholar 

  9. J. Luo, R. Pohl, L. Qi et al., Printing functional 3D microdevices by laser-induced forward transfer. Small 13(9), 1602553 (2017)

    Article  Google Scholar 

  10. R. Rioboo, M. Marengo, C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33(1), 112–124 (2002)

    Article  Google Scholar 

  11. S. Shakeri, S. Chandra, Splashing of molten tin droplets on a rough steel surface. Int. J. Heat Mass Transf. 45(23), 4561–4575 (2002)

    Article  Google Scholar 

  12. W. Li, W. Zhu, S. Quan, Visual experimental study on droplet impacted onto horizontal solid surface. J. Therm. Sci. Technol. 7(2), 155–160 (2008)

    Google Scholar 

  13. L. Huang, Z. Liu, Y. Liu et al., Effect of contact angle on water droplet freezing process on a cold flat surface. Exp. Thermal Fluid Sci. 40, 74–80 (2012)

    Article  Google Scholar 

  14. Q. Xu, Z. Li, J. Wang et al., Characteristics of single droplet impact on cold plate surfaces. Drying Technol. 30(15), 1756–1762 (2012)

    Article  Google Scholar 

  15. L. Gang-Tao, G. Ya-Li, S. Sheng-Qiang, Observation and analysis of drop impact on wetted spherical surfaces with low velocity. Acta Physica Sinica 62(18), 184703 (2013)

    Article  Google Scholar 

  16. A.L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing [J]. Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Berberovic E, Investigation of free-surface flow associated with drop impact: numerical simulations and theoretical modeling. Technische Universität, (2010)

  18. K. Okumura, F. Chevy, D. Richard et al., Water spring: a model for bouncing drops. EPL (Europhys. Lett.) 62(2), 237 (2003)

    Article  ADS  Google Scholar 

  19. M. Pasandideh-Fard, S.D. Aziz, S. Chandra et al., Cooling effectiveness of a water drop impinging on a hot surface. Int. J. Heat Fluid Flow 22(2), 201–210 (2001)

    Article  Google Scholar 

  20. G. Strotos, G. Aleksis, M. Gavaises et al., Non-dimensionalisation parameters for predicting the cooling effectiveness of droplets impinging on moderate temperature solid surfaces. Int. J. Therm. Sci. 50(5), 698–711 (2011)

    Article  Google Scholar 

  21. J. Blake, D. Thompson, D. Raps et al., Simulating the freezing of supercooled water droplets impacting a cooled substrate. AIAA J. 53(7), 1725–1739 (2015)

    Article  ADS  Google Scholar 

  22. Y. Yao, C. Li, H. Zhang et al., Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces. Appl. Surf. Sci. 419, 52–62 (2017)

    Article  ADS  Google Scholar 

  23. K. Zhao, Y.Z. She, Y.L. Jiang et al., Numerical study on phase change behavior of liquid nitrogen droplets impinging on solid surface. Acta Physica Sinica 68(24), 20190945 (2019)

    Article  Google Scholar 

  24. J. Hou, J. Gong, X. Wu et al., Numerical study on impacting-freezing process of the droplet on a lateral moving cold superhydrophobic surface. Int. J. Heat Mass Transf. 183, 122044 (2022)

    Article  Google Scholar 

  25. X. Wang, W. Yu, M. Wang et al., Spreading behavior of Sn droplets impacting Cu and stainless steel substrates. Surf. Interfaces 29, 101790 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (Grant No. 51465032 and No.52061023).

Funding

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission, 51465032, Innovative Research Group Project of the National Natural Science Foundation of China, 52061023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyuan Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Wang, M., Wang, F. et al. Study of the dynamic wetting behavior of Sn droplet impacting Cu substrate. Appl. Phys. A 128, 646 (2022). https://doi.org/10.1007/s00339-022-05795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05795-4

Keywords

Navigation