Skip to main content

Advertisement

Log in

Tunable decorated flake interlayers of functionalized graphene oxide for energy storage devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In today’s technologically advanced world, large-scale energy use and its storage are crucial. The present focus of scientific research in this area is on the development of high-performance supercapacitors. Graphene has sparked interest in supercapacitor applications due to its exceptional characteristics. In present work using phenyl hydrazine hydrochloride functionalization of graphene oxide are studied. Different techniques such as X-ray diffractometry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy are used to analyze materials in prodigious detail. Using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques, the electrochemical parameters of GO and functionalized graphene oxide (FGO) for supercapacitor applications are analyzed. Each sub-nanopore in the graphene interlayer of functionalized graphene around a hundredth of a nanometer in diameter displayed the greatest specific capacitance of 1207 Fg−1 with highest energy density of 482 W h kg−1. A simple and cost-effective production approach facilitates the commercialization of functionalized graphene with good capacitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Dai, Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31–42 (2013)

    Google Scholar 

  2. A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application. The J. Phys. Chem. C 115, 14006–14013 (2011)

    Google Scholar 

  3. D. Yang, C. Bock, Laser reduced graphene for supercapacitor applications. J. Power. Sour. 337, 73–81 (2017)

    ADS  Google Scholar 

  4. H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H.-M. Cheng, Q.-H. Yang, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9, 3135–3142 (2016)

    Google Scholar 

  5. A. Bakandritsos, P. Jakubec, M. Pykal, M.J.F. Otyepka, Covalently functionalized graphene as a supercapacitor electrode material. FlatChem. 13, 25–33 (2019)

    Google Scholar 

  6. M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors. J. Power. Sour. 195, 7880–7903 (2010)

    ADS  Google Scholar 

  7. S. Zhang, Y. Li, N. Pan, Graphene based supercapacitor fabricated by vacuum filtration deposition. J. Power. Sour. 206, 476–482 (2012)

    Google Scholar 

  8. C. Caliman, A. Mesquita, D. Cipriano, J. Freitas, A. Cotta, W.A.J.R. Macedo, A. Porto, One-pot synthesis of amine-functionalized graphene oxide by microwave-assisted reactions: An outstanding alternative for supporting materials in supercapacitors. RSC Advances. 8, 6136–6145 (2018)

    ADS  Google Scholar 

  9. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power. Sour. 157, 11–27 (2006)

    ADS  Google Scholar 

  10. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    ADS  Google Scholar 

  11. W. Chen, H. Yu, S.-Y. Lee, T. Wei, J. Li, Z. Fan, Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872 (2018)

    Google Scholar 

  12. F. Li, X. Jiang, J. Zhao, S. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015)

    Google Scholar 

  13. Z.M. Dang, M.S. Zheng, J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12, 1688–1701 (2016)

    Google Scholar 

  14. J. Ni, Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016)

    Google Scholar 

  15. H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10, 1903030 (2020)

    Google Scholar 

  16. Q. Wang, Y. Zhou, X. Zhao, K. Chen, G. Bingni, T. Yang, H. Zhang, W. Yang, J. Chen, Tailoring carbon nanomaterials via a molecular scissor. Nano. Today. 36, 101033 (2021)

    Google Scholar 

  17. Q. Wu, L. Yang, X. Wang, Z. Hu, Carbon-based nanocages: Carbon-based nanocages: A new platform for advanced energy storage and conversion (Adv. Mater. 27/2020). Advan. Mater. 32, 2070206 (2020)

    Google Scholar 

  18. S. Altin, F. Bulut, S.J.J.O.E.S. Yasar, The production of a low cost printing device for energy storage systems and the application for supercapacitors. J. Energy. Storage. 25, 100882 (2019)

    Google Scholar 

  19. M. Akkoç, S. Demirel, E. Öz, S. Altın, A. Bayri, V. Dorcet, T. Roisnel, C. Bruneau, İ Özdemir, S.J.P. Yaşar, Cationic versus anionic Pt complex: The performance analysis of a hybrid-capacitor DFT calculation and electrochemical properties. Polyhedron 157, 434–441 (2019)

    Google Scholar 

  20. N. Buğday, S. Altın, S.J.I.J.O.E.R. Yaşar, Porous carbon prepared by zeolitic imidazolate framework (ZIF-7-III) as the precursor for supercapacitor applications in different electrolytes. Int. J. Energy. Res. 46, 795–809 (2022)

    Google Scholar 

  21. S. Altin, E. Öz, S. Altundağ, A. Bayri, T. Roisnel, V. Dorcet, C. Bruneau, İ Özdemir, S.J.I.J.O.E.R. Yaşar, Investigation of hybrid-capacitor properties of ruthenium complexes. Int J Energy Res 43, 6840–6851 (2019)

    Google Scholar 

  22. Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li, J. Zhang, H. Hou, J.J.A.A.E.M. Yang, Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2, 2063–2071 (2019)

    Google Scholar 

  23. S.A. Faghidian, Reissner stationary variational principle for nonlocal strain gradient theory of elasticity. Eur. J. Mech. A/Solids 70, 115–126 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  24. S.A. Faghidian, Higher-order nonlocal gradient elasticity: A consistent variational theory. Int. J. Eng. Sci. 154, 103337 (2020)

    MathSciNet  MATH  Google Scholar 

  25. S.A. Faghidian, Higher-order mixture nonlocal gradient theory of wave propagation. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.6885 (article in press)

    Article  Google Scholar 

  26. S.A. Faghidian, Contribution of nonlocal integral elasticity to modified strain gradient theory. Eur. Phys. J. Plus 136, 559 (2021)

    Google Scholar 

  27. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    ADS  Google Scholar 

  28. G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki− Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270 (2009)

    Google Scholar 

  29. X. Wang, L. Zhi, N. Tsao, Ž Tomović, J. Li, K. Müllen, Transparent carbon films as electrodes in organic solar cells. Angew. Chem. Int. Ed. 47, 2990–2992 (2008)

    Google Scholar 

  30. X. Wu, W. Qin, Y. Guo, Z. Xie, Self-lubricative coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate–graphite. Appl. Surf. Sci. 254, 6395–6399 (2008)

    ADS  Google Scholar 

  31. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    ADS  Google Scholar 

  32. R. Durge, R. Kshirsagar, P. Tambe, Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite. Procedia. Eng. 97, 1457–1465 (2014)

    Google Scholar 

  33. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I. McGovern, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)

    Google Scholar 

  34. N. Welham, V. Berbenni, P. Chapman, Effect of extended ball milling on graphite. J. Alloy. Compd. 349, 255–263 (2003)

    Google Scholar 

  35. I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, M.-J. Kim, D.W. Chang, Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. 109, 5588–5593 (2012)

    ADS  Google Scholar 

  36. E.-K. Choi, I.-Y. Jeon, S.-Y. Bae, H.-J. Lee, H.S. Shin, L. Dai, J.-B. Baek, High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. Chem. Commun. 46, 6320–6322 (2010)

    Google Scholar 

  37. Z. Wang, Y. Dong, H. Li, Z. Zhao, H.B. Wu, C. Hao, S. Liu, J. Qiu, X.W.D. Lou, Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 1–8 (2014)

    ADS  Google Scholar 

  38. L. Wang, P. Wang, Y. Liu, L. Zheng, Q. Sun, S. Qiu, C.J.R.A. Liu, Effects of phenylhydrazine-4-sulfonic acid on the reduction of GO and preparation of hydrophilic graphene with broad pH stability and antioxidant activity. RSC Adv. 5, 38696–38705 (2015)

    ADS  Google Scholar 

  39. X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu, J. Chen, Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Func. Mater. 28, 1707247 (2018)

    Google Scholar 

  40. Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1, 14814–14843 (2013)

    Google Scholar 

  41. M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks, Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy. Mater. 1, 707–714 (2018)

    Google Scholar 

  42. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Google Scholar 

  43. Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015)

    Google Scholar 

  44. X. Li, X. Zang, Z. Li, X. Li, P. Li, P. Sun, X. Lee, R. Zhang, Z. Huang, K. Wang, Large-area flexible core–shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes. Adv. Func. Mater. 23, 4862–4869 (2013)

    Google Scholar 

  45. P.H. Wadekar, R.V. Khose, D.A. Pethsangave, S.J.C. Some, One-pot synthesis of sulfur and nitrogen co-functionalized graphene material using deep eutectic solvents for supercapacitors. Chem. Sus. Chem. 12, 3326–3335 (2019)

    Google Scholar 

  46. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S.J.C. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Google Scholar 

  47. S. Alipour, S.M.J.E.A. Mousavi-Khoshdel, Investigation of the electrochemical behavior of functionalized graphene by nitrophenyl groups as a potential electrode for supercapacitors. Electrochimica. Acta. 317, 301–311 (2019)

    Google Scholar 

  48. M. Liu, Y. Duan, Y. Wang, Y.J.M. Zhao, Design Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites. Mater. Des. 53, 466–474 (2014)

    Google Scholar 

  49. K. Ullah, Z.-D. Meng, S. Ye, L. Zhu, W.-C.J.J.O.I. OhE, Chemistry, synthesis and characterization of novel PbS–graphene/TiO2 composite with enhanced photocatalytic activity. J. Ind. Eng. Chem. 20, 1035–1042 (2014)

    Google Scholar 

  50. S.K. Meher, P. Justin, G.J.A.A.M. Ranga Rao, interfaces, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011)

    Google Scholar 

  51. Y. Fan, H. Chen, Y. Li, D. Cui, Z. Fan, C.J.C.I. Xue, PANI-Co3O4 with excellent specific capacitance as an electrode for supercapacitors. Ceram. Int. 47, 8433–8440 (2021)

    Google Scholar 

  52. S. Manzoor, M.F. Ashiq, M. Usman, M. Sadaqat, K. Mahmood, T. Munawar, F. Iqbal, M.M. Al-Anazy, M.N. Ashiq, M.J.J.O.E.S. Najam-ul-Haq, Development of excellent and novel flowery zirconia/cadmium sulfide nanohybrid electrode: For high performance electrochemical supercapacitor application. J. Energy. Storage. 40, 102718 (2021)

    Google Scholar 

  53. M.W. Raza, S. Kiran, A. Razaq, M.F. Iqbal, A. Hassan, S. Hussain, M.N. Ashiq, Z.J.J.O.N.R. Meng, Strategy to enhance the electrochemical characteristics of lanthanum sulfide nanorods for supercapacitor applications. J. Nanoparticle. Res. 23, 1–12 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R291), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia. Moreover, we would like to thank Taif University Research Supporting Project number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfryyan, N., Manzoor, S., Abid, A.G. et al. Tunable decorated flake interlayers of functionalized graphene oxide for energy storage devices. Appl. Phys. A 128, 557 (2022). https://doi.org/10.1007/s00339-022-05707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05707-6

Keywords

Navigation