Skip to main content
Log in

Microwave-assisted hydrothermal nanoarchitectonics of polyethyleneimine-coated iron oxide nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this work is to show how the magnetic properties of polyethyleneimine (PEI)-coated and naked magnetite (Fe3O4) nanoparticles are improved when the alternative in situ PEI microwave-assisted hydrothermal synthesis method is employed in contrast to the results obtained for nanoparticles synthesized from the same precursors by a conventional co-precipitation method. As far as we know, this is the first report on “in situ” PEI-coated Fe3O4 nanoparticles obtained by microwave-assisted hydrothermal synthesis. For this purpose, uncoated and PEI-coated Fe3O4 nanoparticles were synthesized by the co-precipitation method (CCPM) using ammoniac as precipitating agent after heating at 80 °C and by a microwave-assisted hydrothermal method (MWAM) using urea at 140 °C during 30 min. The obtained powders so were characterized by X-ray diffraction, scanning and transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, Mössbauer spectroscopy and DC magnetization studies. It was seen that the magnetic properties of the nanoparticles strongly depend on the synthesis route and that they also vary if particles are coated by the nonmagnetic polymer (PEI). The morphology, size, surface and anisotropy effects play an important role in the magnetic behavior. In situ PEI-coated nanoparticles obtained by MWAM, with larger average size and better crystallinity, exhibited a higher coercive field and saturation magnetization values than PEI-coated nanoparticles synthesized by CCPM; the latter revealed a quasi-complete superparamagnetic behavior at room temperature. The synthesis by MWAM is a faster, simple and low-cost way to obtain in situ PEI-coated Fe3O4 nanoparticles with reasonable saturation magnetization, coercivity and suitable average particle size values to be tested for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Atashi, B. Divband, A. Keshtkar, M. Khatamian, F. Farahmand-Zahed, A.K. Nazarlo, N. Gharehaghaji, J. Magn. Magn. Mater. 438, 46 (2017)

    ADS  Google Scholar 

  2. R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R.P. Friedrich, C. Janko, M. Pöttler, S. Dürr, C. Alexiou, Biochem. Biophys. Res. Commun. 468, 463 (2015)

    Google Scholar 

  3. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, R167–R181 (2003)

    ADS  Google Scholar 

  4. M. Coïsson, G. Barrera, F. Celegato, L. Martino, F. Vinai, P. Martino, G. Ferraro, P. Tiberto, J. Magn. Magn. Mater. 415, 2 (2016)

    ADS  Google Scholar 

  5. A.M. Pavlov, B.G. De Geest, B. Louage, L. Lybaert, S. De Koker, Z. Koudelka, A.V. Sapelkin, G.B. Sukhorukov, Adv. Mater. (2013). https://doi.org/10.1002/adma.201303287

    Article  Google Scholar 

  6. W. Gao, Y. Zheng, R. Wang, H. Chen, X. Cai, G. Lu, L. Chu, Ch. Xu, N. Zhang, Z. Wang, H. Ran, P. Li, C. Yang, Z. Mei, J. Song, Acta Biomater. 29, 298 (2016)

    Google Scholar 

  7. R.G. Bai, K. Muthoosamy, S. Manickam, Nanomedicine in Theranostics, 1st edn. (William Andrew Publishing, Norwich, 2015), pp. 195–213

    Google Scholar 

  8. F.A. Blyakhman, A.P. Safronov, A.Y. Zubarev, T.F. Shklyar, O.G. Makeyev, E.B. Makarova, V.V. Melekhin, A. Larrañaga, G.V. Kurlyandskaya, Results Phys. 7, 3624 (2017)

    ADS  Google Scholar 

  9. G.V. Kurlyandskaya, E. Fernández, A.P. Safronov, F.A. Blyakhman, A.V. Svalov, A. Burgoa Beitia, I.V. Beketov, J. Magn. Magn. Mater. 441, 650 (2017)

    ADS  Google Scholar 

  10. K. Chatterjee, S. Sarkar, K.J. Rao, S. Paria, Adv. Colloid Interface Sci. 209, 8 (2014)

    Google Scholar 

  11. A. Figuerola, R. Di Corato, L. Manna, T. Pellegrino, Pharmacol. Res. 62, 126 (2010)

    Google Scholar 

  12. J. Bustamante Mamania, L. Fernel Gamarraa, G. Espósito de Souza Brito, Mater. Res. 17, 542 (2014)

    Google Scholar 

  13. C. Albornoz, E. Sileo, S.E. Jacobo, Phys. B Condens. Matter. 354, 149 (2004)

    ADS  Google Scholar 

  14. C. Albornoz, S.E. Jacobo, J. Magn. Magn. Mater. 305, 12 (2006)

    ADS  Google Scholar 

  15. K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A.M.D. Showkat, Y.C. Niho, J. Polym. Sci., Part A-1: Polym. Chem. 44, 3355 (2006)

    Google Scholar 

  16. L.M. Popescu, R.M. Pitescu, M. Petricaenu, M.F. Ottaviani, M. Cangiotti, E. Vasile, M.M. Dirtu, M. Wolf, Y. García, G. Schinteie, V. Kuncser, Mater. Chem. Phys. 160, 84 (2015)

    Google Scholar 

  17. C.C. Berry, A.S.G. Curtis, J. Phys. D. Appl. Phys. 36, 198 (2003)

    ADS  Google Scholar 

  18. L. Zhang, W.F. Dong, H.B. Sun, Nanoscale 17, 7664 (2013)

    ADS  Google Scholar 

  19. F. Wang, X. Li, W. Li, H. Bai, Y. Gao, J. Ma, W. Liu, G. Xi, Mater. Sci. Eng., C 90, 46 (2018)

    Google Scholar 

  20. M. Dabbaghi, R.K. Oskuee, K. Hashemi, A.A. Goli, Artif. Cells Nanomed. Biotechnol. (2018). https://doi.org/10.1080/21691401.2017.1304406

    Article  Google Scholar 

  21. M. López-Viota Gallardo, R. Megías Iglesias, M.A. Ruiz Martínez, J.L.A. Mediano, ARS Pharm. 55, 51 (2014)

    Google Scholar 

  22. O. Mykhaylyk, T. Sobisch, I. Almstätte, Y. Sanchez-Antequera, S. Brandt, M. Anton, M. Döblinger, D. Eberbeck, M. Settles, R. Braren, D. Lerche, C. Plank, Pharm. Res. 29, 1344 (2012)

    Google Scholar 

  23. K. Petcharoen, A. Sirivat, Mater. Sci. Eng. B 177, 421 (2012)

    Google Scholar 

  24. L. Shen, Y. Qiao, Y. Guo, S. Meng, G. Yang, M. Wu, J. Zhao, Ceram. Int. 40, 1519 (2014)

    Google Scholar 

  25. Z. Chen, Y. Du, Z. Li, K. Yang, X. Lv, J. Magn. Magn. Mater. 426, 121 (2017)

    ADS  Google Scholar 

  26. S. Lian, Z. Kang, E. Wang, M. Jiang, C. Hu, L. Xu, Solid State Commun. 127, 605 (2003)

    ADS  Google Scholar 

  27. W. Lei, Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou, J. Lin, Phys. Lett. A 381, 314 (2017)

    Google Scholar 

  28. D. Stuerga, P. Gaillard, Tetrahedron 52, 5505 (1996)

    Google Scholar 

  29. I. Mitar, L. Guć, Ž Soldin, M. Vrankić, A. Paut, A. Prkić, S. Krehula, Curr. Comput.-Aided Drug Des. (2021). https://doi.org/10.3390/cryst11040383

    Article  Google Scholar 

  30. C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin, J. Solid State Chem. 228, 160 (2015)

    ADS  Google Scholar 

  31. T. Alammar, I. Hamm, V. Grasmik, M. Wark, A.V. Mudring, Inorg. Chem. 56, 6920 (2017)

    Google Scholar 

  32. C.S. Lim, A. Aleksandrovsky, V. Atuchin, M. Molokeev, A. Oreshonkov, Curr. Comput.-Aided Drug Des. 10, 1000 (2020)

    Google Scholar 

  33. K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Chem. Mater. (1999). https://doi.org/10.1021/cm9803859

    Article  Google Scholar 

  34. S. Komarneni, W. Hu, Y.D. Noh, A. Van Orden, S. Feng, C. Wei, H. Pang, F. Gao, Q. Lu, H. Katsuki, Ceram. Int. 38, 2563 (2012)

    Google Scholar 

  35. L. Hu, A. Percheron, D. Chaumont, C.H. Brachais, J. Sol-Gel Sci. Technol. (2011). https://doi.org/10.1007/s10971-011-2579-4

    Article  Google Scholar 

  36. E.M. Kostyukhin, L.M. Kustov, Mendeleev Commun. 28, 559 (2018)

    Google Scholar 

  37. A. Rizzuti, M. Dassisti, P. Mastrorilli, M.C. Sportelli, N. Cioffi, R.A. Picca, E. Agostinelli, G. Varvaro, R. Caliandro, J. Nanopart. Res. (2015). https://doi.org/10.1007/s11051-015-3213-0

    Article  Google Scholar 

  38. C. Blanco-Andujar, D. Ortega, P. Southern, Q.A. Pankhurst, N.T.K. Thanh, Nanoscale (2015). https://doi.org/10.1039/c4nr06239f

    Article  Google Scholar 

  39. P. Rouhani, R.N. Singh, J. Nanosci. Nanotechnol. (2020). https://doi.org/10.1166/jnn.2020.17896

    Article  Google Scholar 

  40. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermochim. Acta 424, 131 (2004)

    Google Scholar 

  41. S. Komarneni, W. Hu, Y.D. Noh, A. Van Orden, S. Feng, C. Wei, H. Pang, F. Gao, Q. Lu, H. Katsuki, Ceram. Int. 38, 2563 (2012)

    Google Scholar 

  42. O. Boussif, F. Lezoualc’ht, M.A. Zanta, M. Djavaheri Mergnyt, D. Schermant, B. Demeneixt, J.-P. Behr, Biochemistry 92, 7297 (1995)

    Google Scholar 

  43. International Centre for Diffraction Data, Powder Diffraction File 2, 12 Campus Boulevard Newtown Square, PA, 19073–3273 USA

  44. H. Klug, L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974), p. 618

    Google Scholar 

  45. R.A. Brand, WinNormos-for-Igor Users Manual, WissEl GmbH, Starnberg (Universitat Duisburg, Duisburg, 2010)

    Google Scholar 

  46. E. Darezereshki, M. Ranjbar, F. Bakhtiari, J. Alloys Compd. 502, 257 (2010)

    Google Scholar 

  47. W. Kim, C.-Y. Suh, S.-W. Cho, K.-M. Roh, H. Kwon, K. Song, I.-J. Shon, Talanta 94, 348 (2012)

    Google Scholar 

  48. M. Girod, S. Vogel, W. Szczerba, A.F. Thunemann, J. Magn. Magn. Mater. 380, 163 (2015)

    ADS  Google Scholar 

  49. Z. Kozakova, I. Kuritka, N.E. Kazantseva, V. Babayan, M. Pastorek, M. Machovsky, P. Bazant, P. Saha, Dalton Trans. 44, 21099 (2015)

    Google Scholar 

  50. A. Palla Papavlu, V. Dinca, M. Filipescu, M. Dinescu, Laser Ablation—From Fundamentals to Applications, vol. 8 (Intechopen, 2017)

    Google Scholar 

  51. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, M.Y. Sidorenko, M.S. Dmitrushkov, Polyhedron 70, 71 (2014)

    Google Scholar 

  52. M. Berrones, L. Lascano, Rev. Politéc. 30, 91 (2009)

    Google Scholar 

  53. E. Murad, J.H. Johnston, Mössbauer Spectroscopy Applied to Inorganic Chemistry (Plenum Publ. Corp, New York, 1987), pp. 507–582

    Google Scholar 

  54. E. Murad, J. Magn. Magn. Mater. 74, 153 (1988)

    ADS  Google Scholar 

  55. Y. Zhu, Q. Wu, J. Nanoparticle Res. 1, 393 (1999)

    ADS  Google Scholar 

  56. A.G. Roca, D. Niznansky, J. Poltierova-Vejpravova, B. Bittova, M.A. González-Fernández, J. Appl. Phys. 105, 114309 (2009)

    ADS  Google Scholar 

  57. C.J. Serna, F. Bodker, S. Morup, M.P. Morales, F. Sandiumenge, S. Veintemillas-Verdague, Solid State Commun. 118, 437 (2001)

    ADS  Google Scholar 

  58. T.J. Daou, J.M. Grenèche, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, S. Begin-Colin, Chem. Mater. 20, 5869 (2008)

    Google Scholar 

  59. R.E. Rosensweig, Encyclopedia of Materials: Science and Technology (Elsevier, Oxford, 2001), pp. 3083–3087

    Google Scholar 

  60. E.D. Smolensky, H.Y.E. Park, Y. Zhou, G.A. Rolla, M. Marjańska, M. Botta, V.C. Pierre, J. Mater. Chem. B: Mater. Biol. Med. (2013). https://doi.org/10.1039/C3TB00369H

    Article  Google Scholar 

  61. Q.-L. Fan, K.-G. Neoh, E.-T. Kang, B. Shuter, S.-C. Wang, Biomaterials 28, 5426 (2007)

    Google Scholar 

  62. M. Mahdavi, M. Bin Ahmad, J. Haron, F. Namvar, B. Nadi, M. Zaki Ab Rahman, J. Amin, Molecules (2013). https://doi.org/10.3390/molecules18077533

    Article  Google Scholar 

  63. B.E. Kashevsky, S.B. Kashevsky, V.S. Korenkov, Y.P. Istomin, T.I. Terpinskaya, V.S. Ulashchik, J. Magn. Magn. Mater. 380, 335 (2015)

    ADS  Google Scholar 

  64. R.A. Bohara, N.D. Thorat, S.H. Pawar, RSC Adv. 6, 43989 (2016)

    ADS  Google Scholar 

  65. F. Roohi, J. Lohrke, A. Ide, G. Schütz, K. Dassler, Int. J. Nanomed 7, 4447 (2012)

    Google Scholar 

  66. Y.B. Khollam, S.R. Dhage, H.S. Potdar, S.B. Deshpande, P.P. Bakare, S.D. Kulkarni, S.K. Date, Mater. Lett. 56, 571 (2002)

    Google Scholar 

  67. H.Y. Hu, H. Yang, P. Huang, D.X. Cui, Y.Q. Peng, J.C. Zhang, F.Y. Lu, J. Lian, D.L. Shi, Chem. Commun. 46, 3866 (2010)

    Google Scholar 

  68. M.P. Calatayud, C. Riggio, V. Raffa, B. Sanz, T.E. Torres, M.R. Ibarra, C. Hoskins, A. Cuschieri, L. Wang, J. Pinkernelle, G. Keilhoff, G.F. Goya, J. Mater. Chem. B 1, 3607 (2013)

    Google Scholar 

Download references

Acknowledgements

Microscopy analyses (SEM and TEM, respectively) were carried out at the CMA Advanced Microscopy Center (Facultad de Ciencias Exactas y Naturales UBA) and at the Materials Microscopy Laboratory (CNEAMAT-GME).

Funding

Partial financial support was received from the Agencia Nacional de Promoción Científica y Tecnológica (Argentina, PICT No. 01152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinthia P. Ramos.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albornoz, C.A., Paulin, M.A., Cristóbal, A.A. et al. Microwave-assisted hydrothermal nanoarchitectonics of polyethyleneimine-coated iron oxide nanoparticles. Appl. Phys. A 128, 68 (2022). https://doi.org/10.1007/s00339-021-05195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05195-0

Keywords

Navigation