Skip to main content
Log in

Nanosecond laser ablation of AlN ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the ablation rate and surface modifications are studied of aluminum nitride ceramic treated by a pulsed nanosecond Nd:YAG laser at four wavelengths—266 nm, 355 nm, 532 nm, and 1064 nm. The ablation depth is presented as a function of the laser fluence and the number of pulses applied. A decrease of the ablation efficiency with the increase of both laser fluence and number of pulses is observed for all wavelengths used. It is found that the laser treatment leads to the formation of a variety of micro and nanostructures on the surface of the material that are strongly dependent on the processing conditions. The laser ablation at the fundamental wavelength leads to the appearance of periodic structures on the surface. Such effect is not observed for the other wavelengths used. It is further found that the laser processing also leads to the formation a conductive layer for all wavelengths. Using a model based on the heat diffusion equation that takes into account the process of ceramic decomposition, the ablation dynamics is followed, and the dependence of the surface layers thickness on the processing conditions is estimated. The results obtained are used to explain the experimentally observed dependences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.H.A. Besisaac, E.M.M. Ewais, Y.M.Z. Ahmed, F.I. Elhosiny, D.V. Kuznetsov, T. Fen, Ren. Energy A 129, 201 (2018)

    Article  Google Scholar 

  2. M. Ma, Y. Wang, M. Navarro-Cía, F. Liu, F. Zhang, Z. Liu, Y. Li, S.M. Hanham, Z. Hao, J. Eur. Ceram. Soc. 39, 4424 (2019)

    Article  Google Scholar 

  3. G. Guisbiers, L. Buchaillot, J. Phys. D: Appl. Phys. 41, 172001 (2008)

    Article  ADS  Google Scholar 

  4. V. Onbattuvelli, S. Atre, Mater. Manufact. Proc. 26, 832 (2011)

    Article  Google Scholar 

  5. Z. Valdez-Nava, D. Kenfaui, M. -L. Locatelli, L. Laudebat and S. Guillemet, In: 2019 IEEE Intern. Workshop Integr. Power Packaging (IWIPP), 91 (2019), https://doi.org/10.1109/IWIPP.2019.8799084

  6. A.N. Samant, N.B. Dahotre, J. Europ. Ceram. Soc. 29, 969 (2009)

    Article  Google Scholar 

  7. Q. Yang, Y. Chen, Zh. Liv, L. Chen, D. Lou, Zh. Zheng, J. Cheng, D. Liu, J. Mater. Sci. 54, 13874 (2019)

    Article  ADS  Google Scholar 

  8. P.A.M. Aguilar, M. Vlasova, M. Kakazey, D.M. Cruz, E.J. Arellano, V. Stetsenko, T. Tomila, A. Ragulya, Opt. Laser Technol. 42, 172 (2010)

    Article  ADS  Google Scholar 

  9. P.E. Koziol, A.J. Antonczak, P. Szymczyk, B. Stepak, K.M. Abramski, Appl. Surf. Sci. 287, 165 (2013)

    Article  ADS  Google Scholar 

  10. B. Stolz, R. Poprawe, Surf. Coat. Technol. 112, 394 (1999)

    Article  Google Scholar 

  11. S. Cao, A.J. Pedraza, L.F. Allard, J. Mater. Res. 10, 54 (1995)

    Article  ADS  Google Scholar 

  12. Y. Hirayama, H. Yabe, M. Obara, J. Appl. Phys. 89, 2943 (2001)

    Article  ADS  Google Scholar 

  13. S.H. Kim, I.-B. Sohn, S. Jeong, Appl. Surf. Sci. 255, 9717 (2009)

    Article  ADS  Google Scholar 

  14. C. Dowding in Advances in Laser Materials Processing, Woodhead Publishing ISBN 978-1-84569-981-9

  15. J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, J. Kruger, IEEE Quant. Electr. 23, 9000615 (2017)

    Google Scholar 

  16. N.N. Nedyalkov, A. Dikovska, R. Nikov, G. Atanasova, S. Hayashi, M. Terakawa, Opt. Las. Technol. 144, 107402 (2021)

    Article  Google Scholar 

  17. N.M. Shaikh, S. Hafeez, B. Rashid, M.A. Baig, Eur. Phys. J. D 44, 371 (2007)

    Article  ADS  Google Scholar 

  18. P. Sainz de Baranda, A.K. Knudsen, M.E. Pruitt, E. Ruh, J. Am. Chem. Soc. 77, 1846 (1994)

    Google Scholar 

  19. V.I. Konov, F. Dausinger, S.V. Garnov, S.M. Klimentov, T.V. Kononenko, O.G. Tzarkova, In: Proc. SPIE 2991, 151 (1997)

  20. M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher, Metallurg. Mater. Transact. A 48, 3036 (2017)

    Article  ADS  Google Scholar 

  21. O. Varlamova, C. Martens, M. Ratzke, J. Reif, Appl. Opt. 53, 10 (2014)

    Article  Google Scholar 

  22. Y. Nakajima, N. Nedyalkov, A. Takami, M. Terakawa, Appl. Phys. A (2015). https://doi.org/10.1007/s00339-015-9166-4

    Article  Google Scholar 

  23. M. Dasbach, H.M. Reinhardt, N.A. Hampp, Nanomaterials 9, 1031 (2019). https://doi.org/10.3390/nano9071031

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Bulgarian Science Fund under project KP-06-H47/11

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nedyalkov.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability

All data generated or analyzed during this study are included in this published article or is available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedyalkov, N., Dikovska, A., Aleksandrov, L. et al. Nanosecond laser ablation of AlN ceramic. Appl. Phys. A 127, 951 (2021). https://doi.org/10.1007/s00339-021-05106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05106-3

Keywords

Navigation