Skip to main content
Log in

Growth, thermal properties and laser performance of Er,Pr:Y2.8Sc1Al4.2O12: a promising multi-wavelength laser crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Er,Pr:Y2.8Sc1Al4.2O12 (Er,Pr:YSAG) crystal has been successfully grown by the Czochralski method. The FWHM of XRC is 0.050°, indicating the high crystalline quality. Besides, thermal conductivity of the crystal is 5.76 W/mK, which is higher than lots of other heavily Er3+ doped crystals meaning the great potential in solid-laser gain media application. Luminescence characters of the crystal at 3 μm are investigated in detail to determine the laser generation potential. An intensive reduce is occurring on the fluorescence lifetimes of 4I13/2 energy level (0.75 ms) of Er3+ ions after Pr3+ ions co-doped, giving the enormous promotion on the multi-wavelength laser generation at 3 μm. Besides, the as-grown Er,Pr:YSAG crystal realizes the dual-wavelength laser generation at 2694 and 2825 nm for the first time, and an average laser power of 235 mW is realized. The M2 factor is used to quantify the laser output beam quality, which value are 1.65/1.56 along x and y axis, meaning a high-brightness laser generation of Er,Pr:YSAG crystal at 3 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.G. Daly, Mid-infrared laser applications, in: Eyesafe Lasers: Components, Systems, and Applications, International Society for Optics and Photonics, 1991, pp. 94–99

  2. R. Kaufmann, A. Hartmann, R. Hibst, Cutting and skin-ablative properties of pulsed mid-infrared laser surgery. J. Dermatol. Surg. Oncol. 20, 112–118 (1994)

    Article  Google Scholar 

  3. F.K. Tittel, D. Richter, A. Fried, Mid-infrared laser applications in spectroscopy, in: Solid-state mid-infrared laser sources, Springer, 2003, pp. 458–529

  4. Z. Xu, P. Wang, W. Liu, Y. Li, B. Gai, Y. Tan, C. Jia, J. Guo, 2.94 μm diode side pumped ErYAG laser, in: 2017, pp. 102540F-102540F-102546

  5. H. Kawase, H. Uehara, H. Chen, R. Yasuhara, Passively Q-switched 2.9 μm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express 12, 102006 (2019)

    Article  ADS  Google Scholar 

  6. L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, D. Tang, Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm. Opt. Express 22, 19495–19503 (2014)

    Article  ADS  Google Scholar 

  7. V.A. Smirnov, I.A. Shcherbakov, Rare-earth scandium chromium garnets as active media for solid-state lasers. IEEE J. Quantum Electron. 24, 949–959 (1988)

    Article  ADS  Google Scholar 

  8. S. Pollack, D. Chang, M. Birnbaum, M. Kokta, Upconversion-pumped 2.8–2.9 μm lasing of Er3+ ion in garnets. J. Appl. Phys. 70, 7227–7239 (1991)

    Article  ADS  Google Scholar 

  9. L. Hu, D. Sun, J. Luo, H. Zhang, S. Yin, Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er:YSGG crystal. J. Lumin. 226, 117502 (2020)

    Article  Google Scholar 

  10. Z.H. Wu, D.L. Sun, S.Z. Wang, J.Q. Luo, X.L. Li, L. Huang, A.L. Hu, Y.Q. Tang, Q. Guo, Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm. Laser Phys. 23, 055801 (2013)

    Article  ADS  Google Scholar 

  11. Y. Chen, Q. Zhang, F. Peng, W. Liu, D. Sun, R. Dou, H. Zhang, Y. He, S. Han, S. Yin, Growth, defects, radiation resistant and optical properties of 30 at% Er: GSAG laser crystal. J. Lumin. 205, 109–114 (2019)

    Article  Google Scholar 

  12. D.S. Sumida, M.S. Mangir, D.A. Rockwell, M.D. Shinn, Laser-related properties of chromium-and neodymium-doped gadolinium scandium aluminum garnet (Cr:Nd:GSAG). JOSA B 11, 2066–2078 (1994)

    Article  ADS  Google Scholar 

  13. Y. Chen, Q. Zhang, F. Peng, W. Liu, R. Dou, Y. He, G. Sun, M. Cheng, D. Sun, Czochralski growth and spectral investigations of Er: GSAG laser crystal. J. Lumin. 199, 60–66 (2018)

    Article  Google Scholar 

  14. M. Tokurakawa, H. Kurokawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A.J.O.E. Kaminskii, Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics. Opt. Express 18, 4390–4395 (2010)

    Article  ADS  Google Scholar 

  15. M. Nikova, V. Tarala, F. Malyavin, D. Vakalov, V. Lapin, D. Kuleshov, A. Kravtsov, I. Chikulina, L. Tarala, E. Evtushenko, The scandium impact on the sintering of YSAG: Yb ceramics with high optical transmittance. J Ceram. Int. 47, 1772–1784 (2021)

    Article  Google Scholar 

  16. G. Xie, D. Tang, W. Tan, H. Luo, H. Zhang, H. Yu, J.J.O.L. Wang, Subpicosecond pulse generation from a Nd: CLNGG disordered crystal laser. Opt. Lett. 34, 103–105 (2009)

    Article  ADS  Google Scholar 

  17. Y. Chen, Y. He, Q. Zhang, J. Xu, Z. Fang, S. Ding, R. Dou, W. Liu, S. Yin, Growth, spectroscopic, diode-pumped mid-infrared laser properties of Er:GSAG crystal. J. Alloys Compd. 814, 152267 (2020)

    Article  Google Scholar 

  18. Y. Chen, Q. Zhang, Y. He, C. Quan, J. Luo, J. Xu, D. Sun, Diode end-pumped dual-wavelength Er, Pr:GSAG laser operating at 2696 and 2828 nm. Opt. Laser Technol. 121, 105811 (2020)

    Article  Google Scholar 

  19. Y. Chen, M. Zhang, Z. Shan, C. Wang, B. Zhang, J. Xu, R.J.J.O.A. Wang, Compounds, high content Er3+-doped 25La2O3–75Ga2O3 glass: a potential material for high-power lasers or EDWA. 837, 155477 (2020)

  20. J. Chen, D. Sun, J. Luo, J. Xiao, R. Dou, Q. Zhang, Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation. Opt. Commun. 301, 84–87 (2013)

    Article  ADS  Google Scholar 

  21. R. Stoneman, L. Esterowitz, Efficient resonantly pumped 2.8μm Er3+: GSGG laser. Opt. Lett. 17, 816–818 (1992)

    Article  ADS  Google Scholar 

  22. W. Krupke, Radiative transition probabilities within the 4f3+ ground configuration of Nd:YAG. IEEE J. Quantum Electron. 7, 153–159 (1971)

    Article  ADS  Google Scholar 

  23. W. Liu, Q. Zhang, W. Zhou, C. Gu, S. Yin, Growth and luminescence of M-type and Tb: scintillation single crystals. IEEE Trans. Nucl. Sci. 57, 1287–1290 (2010)

    Article  ADS  Google Scholar 

  24. K.A. Gschneidner, L. Eyring, G.H. Lander, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2002)

  25. Z. Pan, H. Zhang, H. Yu, M. Xu, Y. Zhang, S. Sun, J. Wang, Q. Wang, Z. Wei, Z. Zhang, Growth and characterization of Nd-doped disordered Ca3Gd2 (BO3) 4 crystal. Appl. Phys. B 106, 197–209 (2012)

    Article  ADS  Google Scholar 

  26. S. Tanabe, T. Ohyagi, N. Soga, T. Hanada, Compositional dependence of Judd–Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Phys. Rev. B 46, 3305–3310 (1992)

    Article  ADS  Google Scholar 

  27. J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, S. Yin, Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er, Pr: GYSGG crystal. Opt. Express 21, 23425–23432 (2013)

    Article  ADS  Google Scholar 

  28. D.-L. Sun, J.-Q. Luo, J.-Z. Xiao, Q.-L. Zhang, J.-K. Chen, W.-P. Liu, H.-X. Kang, S.-T. Yin, Luminescence and thermal properties of Er:GSGG and Yb, Er:GSGG laser crystals. Chin. Phys. Lett. 29, 054209 (2012)

    Article  ADS  Google Scholar 

  29. T. Sanamyan, M. Dubinskii, Cryogenically cooled operation of diode-pumped 3 um Er3+:Y2O3 ceramic laser, in: Laser Technology for Defense and Security VI, International Society for Optics and Photonics, 2010, pp. 76860H

  30. D. Lancaster, J. Dawes, Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr, Tm, Ho: YAG laser. Opt. Laser Technol. 30, 103–108 (1998)

    Article  ADS  Google Scholar 

  31. J. Liu, J. Liu, Y. Tang, Performance of a diode end-pumped Cr, Er: YSGG laser at 2.79 μm. Laser Phys. 18, 1124–1127 (2008)

    Article  ADS  Google Scholar 

  32. T. Johnston, M. Sasnett, J.-L. Doumont, A. Siegman, Laser beam quality versus aperture size in a cw argon-ion laser. Opt. Lett. 17, 198–200 (1992)

    Article  ADS  Google Scholar 

  33. A.E. Siegman, Optical resonators, in: Proc. SPIE, 1990, pp. 2

  34. A.E. Siegman, Defining, measuring, and optimizing laser beam quality, in: Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, International Society for Optics and Photonics, 1993, pp. 2–12

Download references

Acknowledgements

Ministry of Science and Technology (MOST) (2020YFB1805800). National Natural Science Foundation of China (NSFC) (51872290, 51700232, 51902202, and 62005098).s

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanzhi Chen or Qingli Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Chen, Y., He, Y. et al. Growth, thermal properties and laser performance of Er,Pr:Y2.8Sc1Al4.2O12: a promising multi-wavelength laser crystal. Appl. Phys. A 127, 517 (2021). https://doi.org/10.1007/s00339-021-04663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04663-x

Keywords

Navigation