Skip to main content
Log in

Effect of crystallographic orientation on structural response of silicon to femtosecond laser irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond laser has been widely utilized for modification of crystal structure to achieve desired functions. So far, however, the effect of crystallographic orientation on the induced structure by femtosecond laser processing has yet been comprehensively studied. The present work is undertaken in an attempt to fill this gap in our knowledge. To this end, commercial-purity Si is used as a target material and high-resolution transmission electron microscopy as well as electron backscatter diffraction are applied to examine the irradiation-induced microstructural changes. The structural response of the pulsed material is found to be principally influenced by the crystallographic orientation of the target surface. Specifically, at the surface orientation close to {111}, a pronounced amorphization effect is observed whereas no disordered material is detected at the orientations close to {100}. This phenomenon could be explained by the lowest crystallization speed required by the (111) surface due to its smallest surface energy. Compared with nanosecond laser, non-thermal melting induced by femtosecond laser induces mild thermal gradient and favors recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from polycrystalline Si irradiated at laser peak-fluence of 0.99 J/cm2

Fig. 2
Fig. 3

taken from single-crystalline Si with the (111) surface

Fig. 4
Fig. 5

taken from polycrystalline Si irradiated at laser peak-fluence of 0.99 J/cm2

Fig. 6

Similar content being viewed by others

Notes

  1. Some inconsistency in spacing between the laser-irradiated spots seen in Fig. 1 is likely due to the perspective effect associated with the sample tilting in the SEM.

References

  1. J. Jia, M. Li, C.V. Thompson, Amorphization of silicon by femtosecond laser pulses. Appl. Phys. Lett. 84, 3205–3207 (2004). https://doi.org/10.1063/1.1719280

    Article  ADS  Google Scholar 

  2. Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, Y. Izawa, Ablation and amorphization of crystalline Si by femtosecond and picosecond laser irradiation. Jpn. J. Appl. Phys. 45, 5791 (2006). https://doi.org/10.1143/JJAP.45.5791

    Article  ADS  Google Scholar 

  3. Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, R. Sasaki, H. Nagai, M. Yoshida, Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation. Appl. Phys. Lett. 90, 044107 (2007). https://doi.org/10.1063/1.2431709

    Article  ADS  Google Scholar 

  4. M. Rini, N. Dean, J. Itatani, Y. Tomioka, R.W. Schoenlein, A. Cavalleri, Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007). https://doi.org/10.1038/nature06119

    Article  ADS  Google Scholar 

  5. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund, M. Wolf, Ultrafast changes in lattice symmetry probed by coherent phonons. Nat. Commun. 3, 1–6 (2012). https://doi.org/10.1038/ncomms1719

    Article  Google Scholar 

  6. M. Hase, P. Fons, K. Mitrofanov, A.V. Kolobov, J. Tominaga, Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons. Nat. Commun. 6, 8367 (2015). https://doi.org/10.1038/ncomms9367

    Article  ADS  Google Scholar 

  7. T.H.R. Crawford, G.A. Botton, H.K. Haugen, Crystalline orientation effects on conical structure formation in femtosecond laser irradiation of silicon and germanium. Appl. Surf. Sci. 256, 1749–1755 (2010). https://doi.org/10.1016/j.apsusc.2009.09.107

    Article  ADS  Google Scholar 

  8. X. Sedao, C. Maurice, F. Garrelie, J.P. Colombier, S. Reynaud, R. Quey, F. Pigeon, Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation. Appl. Phys. Lett. 104, 171605 (2014). https://doi.org/10.1063/1.4874626

    Article  ADS  Google Scholar 

  9. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196–198 (1982). https://doi.org/10.1364/OL.7.000196

    Article  ADS  Google Scholar 

  10. A.G. Cullis, N.G. Chew, H.C. Webber, D.J. Smith, Orientation dependence of high speed silicon crystal growth from the melt. J. Cryst. Growth. 68, 624–638 (1984). https://doi.org/10.1016/0022-0248(84)90469-X

    Article  ADS  Google Scholar 

  11. J.A. Yater, M.O. Thompson, Orientation dependence of laser amorphization of crystal Si. Phys. Rev. Lett. 63, 2088 (1989). https://doi.org/10.1103/PhysRevLett.63.2088

    Article  ADS  Google Scholar 

  12. S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217–224 (2002). https://doi.org/10.1038/nmat767

    Article  ADS  Google Scholar 

  13. M.Z. Mo, Z. Chen, R.K. Li, M. Dunning, B.B.L. Witte, J.K. Baldwin, A.H. Reid, Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360, 1451–1455 (2018). https://doi.org/10.1126/science.aar2058

    Article  ADS  Google Scholar 

  14. L. Jiang, A.D. Wang, B. Li, T.H. Cui, Y.F. Lu, Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light-Sci. Appl. 7, 17134–17134 (2018). https://doi.org/10.1038/lsa.2017.134

    Article  Google Scholar 

  15. J. Bonse, K.W. Brzezinka, A.J. Meixner, Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 221, 215–230 (2004). https://doi.org/10.1016/S0169-4332(03)00881-X

    Article  ADS  Google Scholar 

  16. J. Bonse, All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon. Appl. Phys. A: Mater. Sci. Process. A 84, 63–66 (2006). https://doi.org/10.1007/s00339-006-3583-3

    Article  ADS  Google Scholar 

  17. Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses. Appl. Phys. Lett. 110, 211602 (2017). https://doi.org/10.1063/1.4984110

    Article  ADS  Google Scholar 

  18. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mater. 48, 119–125 (2003). https://doi.org/10.1016/S1359-6462(02)00335-4

    Article  Google Scholar 

  19. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng: A. 527, 2738–2746 (2010). https://doi.org/10.1016/j.msea.2010.01.004

    Article  Google Scholar 

  20. H. Mecking, K. Lücke, A new aspects of the theory of flow stress of metals. Scripta Metall. 4, 427–432 (1970). https://doi.org/10.1016/0036-9748(70)90078-5

    Article  Google Scholar 

  21. M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Relaxation between electrons and the crystalline lattice. Sov. Phys. JETP 4, 173–178 (1957)

    MATH  Google Scholar 

  22. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    ADS  Google Scholar 

  23. H.M. van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-pm picosecond laser pulses. Phys. Rev. B 35, 8166–8176 (1987). https://doi.org/10.1103/PhysRevB.35.8166

    Article  ADS  Google Scholar 

  24. M.I. Gallant, H.M. van Driel, Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium. Phys. Rev. B 26, 2133–2146 (1982). https://doi.org/10.1103/PhysRevB.26.2133

    Article  ADS  Google Scholar 

  25. J.K. Chen, D.Y. Tzou, J.E. Beraun, Numerical investigation of ultrashort laser damage in semiconductors. Int. J. Heat Mass Transfer. 48, 501–509 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.015

    Article  MATH  Google Scholar 

  26. T. Jostein, E.F. Sean, Temperature dependent ablation threshold in silicon using ultrashort laser pulses. J. Appl. Phys. 112, 103514 (2012). https://doi.org/10.1063/1.4766380

    Article  Google Scholar 

  27. R. Vanselow, R. Howe, Chemistry and Physics of Solid Surfaces VII, Berlin (Springer, Berlin Heidelberg, Heidelberg, 1988).

    Book  Google Scholar 

  28. A.G. Cullis, H.C. Webber, N.G. Chew, J.M. Poate, P. Baeri, Transitions to defective crystal and the amorphous state induced in elemental Si by laser quenching. Phys. Rev. Lett. 49, 219 (1982). https://doi.org/10.1103/PhysRevLett.49.219

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This experimental work is supported by the National Key Research and Development Program of China (2017YFB1104803). This theoretical work is supported by the National Natural Science Foundation of Guangdong Province (2019A1515010745). The authors acknowledge assistance of Qing He in laser irradiation experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Guo or Ting Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, L., Mironov, S. et al. Effect of crystallographic orientation on structural response of silicon to femtosecond laser irradiation. Appl. Phys. A 127, 196 (2021). https://doi.org/10.1007/s00339-021-04341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04341-y

Keywords

Navigation