Skip to main content
Log in

Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study exhibits excellent sensing characteristics of graphene-based prism-coupled surface plasmon resonance (SPR) biosensor for effectual sensing of both glucose concentrations in human blood samples in the range 25–175 mg/dl and gas with refractive index variations from 1.0000 to 1.0007 at a wavelength of 589 nm. The foremost attractiveness of the proposed SPR biosensor lies with excellent optical properties of N-FK51A-based glass prism along with the inclusion of a gold layer and a thin graphene layer. Transfer matrix method and angular interrogation technique are employed to envisage sharp SPR reflectance curves by optimizing the thickness of the gold layer and number of graphene layers. Aside this, an excellent electric field enhancement factor is accomplished near the graphene and sensing layer interface, which dramatically escalates the absorption of glucose and gas analytes. Subsequently, several performance measuring factors such as sensitivity, detection accuracy, resonance angle shift, and quality factor are thoroughly scrutinized and compared with other conventional SPR sensors. Moreover, simulation results reveal some noteworthy upshots like sensitivity of 275.15°/RIU, detection accuracy of 1.41/°, and quality factor of 76.2 that are obtained for glucose analytes, whereas sensitivity of 92.1°/RIU, detection accuracy of 2.55/° and quality factor of 230.2 are attained for gaseous analytes. Interestingly, it is found that the aforementioned parameters fitted excellently with a linear trend line, which leads to accurate investigation of glucose concentration as well as gaseous analytes. Hence the suggested structure opens up an avenue for suitable biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F.S. Ligler, C.R. Taitt, Optical biosensor: today and tomorrow (Elsevier, Amsterdam, 2008)

    Google Scholar 

  2. J. Piehler, A. Brecht, Anal. Chem. 68, 139 (1996)

    Article  Google Scholar 

  3. C.A. Rowe-Taitt, J.W. Hazzard, K.E. Hoffman, J.J. Cras, J.P. Golden, F.S. Ligler, Biosens. Bioelectron. 15, 579 (2000)

    Article  Google Scholar 

  4. S.K. Mishra, B.D. Gupta, Plasmonics 7, 627 (2012)

  5. R. Tabassum, S.K. Mishra, B.D. Gupta, Phys. Chem. Chem. Phys. 15, 11868 (2013)

  6. B.D. Gupta, R.K. Verma, J. Sensors 2009, 979761 (2009)

  7. R.K. Verma, B.D. Gupta, J. Opt. Soc. Am. A 27, 846 (2010)

  8. D.V. Nesterenko, S. Hayashi, Z. Sekkat, J. Opt. 18, 065004 (2016)

    Article  ADS  Google Scholar 

  9. A.K. Sheridan, P. Ngamukot, P.N. Bartlett, J.S. Wilkinson, Sens. Actuators B Chem.117, 253 (2006)

  10. J. Homola, Surface Plasmon Resonance Based Sensors. (Springer Series on Chemical Sensors and Biosensors, New-York, 2006)

  11. S. Scarano, M. Mascini, A.P.F. Turner, M. Minunni, Biosens. Bioelectron. 25, 957 (2010)

    Article  Google Scholar 

  12. V. Kodoyianni, BioTechniques 50, 32 (2011)

  13. M.S.A. Gandhi, S. Chu, K. Senthilnathan, P.R. Babu, K. Nakkeeran, Q. Li, Appl. Sci. 9, 949 (2019)

    Article  Google Scholar 

  14. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003)

  15. H. Zhu, Graphene: Fabrication, Characterizations, Properties and Applications. (Academic Press, Cambridge, 2017)

  16. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  17. K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Gri-gorieva, S.V. Dubonos, A. Firsov, Nature 438, 7065 (2005)

    Article  Google Scholar 

  18. A. Verma, A. Prakash, R. Tripathi, Opt. Commun. 357, 106 (2015)

    Article  ADS  Google Scholar 

  19. A. Shalabney, I. Abdulhalim, Appl. Phys. 159, 24 (2010)

    Google Scholar 

  20. H. Fu, S. Zhang, H. Chen, J. Weng, IEEE Sens. J. 15, 5478 (2015)

    Article  ADS  Google Scholar 

  21. W.V. Gonzales, A.T. Mobashsher, A. Abbosh, Sensors 19, 800 (2019)

    Article  Google Scholar 

  22. M.N. Kazm, Int. J. Med. Health Res. 3, 138 (2017)

  23. A. Srivastava, Y.K. Prajapati, Photonic Sens. 9, 284 (2019)

    Article  ADS  Google Scholar 

  24. A. Verma, A. Prakash, R. Tripathi, Opt. Quant. Electron. 47, 1197 (2015)

    Article  Google Scholar 

  25. W. Daniyal, Y.W. Fen, J. Abdullah, A.R. Sadrolhosseini, S. Saleviter, N.A.S. Omar, Opt. Express 26, 34880 (2018)

    Article  ADS  Google Scholar 

  26. G. Nemova, R. Kashyap, Opt. Commun. 281, 1522 (2008)

    Article  ADS  Google Scholar 

  27. Z. Yu, S. Fan, Opt. Express 19, 10029 (2011)

    Article  ADS  Google Scholar 

  28. A. Dhibi, I. Sassi, M. Oumezzine, Indian J. Phys. 90, 125 (2016)

    Article  ADS  Google Scholar 

  29. A. Sudheer, S. Porwal, S. Bhartiya, B.T. Rao, P. Tiwari, H. Srivastava, T.K. Sharma, V.N. Rai, A.K. Srivastava, P.A. Naik, J. Appl. Phys. 120, 043101 (2016).

  30. D. Li, B. Lu, Biomicrofluidics 10, 011913 (2016)

    Article  Google Scholar 

  31. A.K. Pandey, A.K. Sharma, Photon. Nanostruct. Fund. Appl. 28, 94 (2018)

  32. A.K. Mishra, S.K Mishra, B.D Gupta, Opt. Commun. 344, 86 (2015)

  33. R. Zhou, C. Wang, W. Xu, L. Xie, Nanoscale 11, 3445–3457 (2019)

    Article  Google Scholar 

  34. H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, L. Wang, Carbon 141, 481–487 (2019)

    Article  Google Scholar 

  35. A. Ahmadivand, B. Gerislioglu, R. Ahuja, Y.K. Mishra, Mater. Today (2019). https://doi.org/10.1016/j.mattod.2019.08.002

    Article  Google Scholar 

  36. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, Nanoscale 11(17), 8091–8095 (2019)

    Article  Google Scholar 

  37. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, S.A. Ghoreishi, Phys. Rev. Appl. 12, 034018 (2019)

    Article  ADS  Google Scholar 

  38. M. Salemizadeh, F. F Mahani, A. Mokhtari, J. Opt. Soc. Am. B 36, 2863–2870 (2019)

  39. S.H. Baek, J. Roh, C.Y. Park, M.W. Kim, R. Shi, S.K. Kailasa, T.J. Park, Mater. Sci. Eng. C 107, 110273 (2020)

    Article  Google Scholar 

  40. S.K. Kailasa, J.R. Koduruc, M.L. Desaia, T.J. Parkb, R.K. Singhald, H. Basu, Trends Anal. Chem. 105, 106–120 (2018)

    Article  Google Scholar 

  41. Y.K. Prajapati, A Yadav, V Singh, J.P Saini, Int. J. Light Electron Opt. 124, 3607 (2013)

  42. P.K. Maharana, R. Jha, P. Padhy, Sens. Actuators B Chem. 207, 117 (2015)

    Article  Google Scholar 

  43. J. Solanki, J.T. Andrews, K.K. Thareja, J. Opt. 41, 127 (2012)

    Article  Google Scholar 

  44. V. Singh, D. Kumar, Progr. Electromagn. Res. 6, 167 (2009)

    Article  Google Scholar 

  45. F. Wyrowski, M. Kuhn, J. Mod. Opt. 2011, 585–586 (2011)

    Google Scholar 

  46. C.C. Katsidis, D.I. Siapkas, Appl. Opt. 41, 19 (2002)

  47. M.C. Troparevsky, A.S. Sabau, A.R. Lupini, Z. Zhang, Opt. Express 18, 24 (2010)

    Article  Google Scholar 

  48. P.P. Banerjee, H. Li, R. Aylo, G. Nehmetallah, Proc. SPIE 8093, 80930-1-5 (2011)

  49. A.J. Abu El-Haija, J. Appl. Phys.93, 2590 (2003)

  50. J.W. Weber, V.E. Calado, M.C.M. van de Sanden, Appl. Phys. Lett. 97, 091904 (2010)

  51. S. Ekgasit, C. Thammacharoen, W. Knoll, Anal. Chem. 76, 561 (2004)

    Article  Google Scholar 

  52. M.S. Rahman, K.A. Rikta, L. BinBashar, M.S. Anower, Optik 156, 384 (2018)

  53. S.K. Mishra, S Rani, B.D. Gupta, Sens. Actuators B 195, 215 (2014)

  54. A.S. Kushwaha, A. Kumar, R. Kumar, Photon. Nanostruct. Fund. Appl. 31, 99–106 (2018)

    Article  ADS  Google Scholar 

  55. B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, Appl. Phys. A 121, 525–533 (2015)

    Article  ADS  Google Scholar 

  56. A. Ahmadivand, B. Gerislioglu, J. Phys. Chem. C 122, 24304–24308 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to convey their sincere thanks to the reviewers for their thorough analysis of the manuscript and making noteworthy suggestions for the sake of improving the quality and importance of the manuscript for the scientific community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puspa Devi Pukhrambam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Pukhrambam, P.D. & Keiser, G. Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl. Phys. A 126, 153 (2020). https://doi.org/10.1007/s00339-020-3328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3328-8

Keywords

Navigation