Skip to main content
Log in

Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work presents van der Waals heterostructure (vdWh) of Black phosphorus (BP)/Transition metal di-chalcogenides (TMDs)/MXene (Ti3C2Tx) based highly sensitive novel SPR sensor for biochemical sensing. 2D layered nature of BP, TMDs, and MXene allow them to form van der Waals heterostructure by vertically stacking them together to get exotic electronic and optical properties useful for surface plasmon resonance (SPR) sensing. Unique properties of MXene like its layered architecture, larger surface area, highly accessible hydrophilic surface terminations, chemical stability, smaller work function, and strong light-matter interaction are utilized to enhance the sensitivity of the proposed sensor. The proposed work theoretically analyzes its sensitivity (S) and compares it with other structures. The anisotropic nature of 2D layered BP is used to tune the sensitivity of the proposed sensor. The highest sensitivity of 388ο/RIU is achieved at 633 nm wavelength for WS2 tri-layer in the proposed biochemical sensor. The SPs field variation along normal to interface validates the highest sensitivity obtained for the proposed heterostructure SPR sensor through field plots. These results will open an innovative route to design and develop such an SPR biochemical sensor practically, with fabrication possibilities of MXene with TMDs and BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

    Article  ADS  Google Scholar 

  2. S. Balendhran, S. Walia, H. Nili, S. Sriram, N. Bhaskaran, Elemental analogoues of graphene: silicene, germanene, stanene and phosphorene. Small 11(6), 640–652 (2015)

    Article  Google Scholar 

  3. G.R. Bhimanapati et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015)

    Article  Google Scholar 

  4. Q. Peng, Z. Wang, B. Sa, B. Wu, Z. Sun, Electronic structure and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 6, 31994 (2016)

    Article  ADS  Google Scholar 

  5. G.R. Bollinger, R. Guerrero, D.P. Lara, J. Quereda, L.V. Garzon, N. Agraït, R. Bratschitsch, A.C. Gomez, Enhanced visibility of MoS2, MoSe2, WSe2 and black-phosphorus: making optical identification of 2D semiconductors easier. Electronics. 4(4), 847–856 (2015)

    Article  Google Scholar 

  6. Y. Liu, N.O. Weiss, X. Duan, H.C. Cheng, Y. Huang, X. Duan, Van der waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016)

    Article  ADS  Google Scholar 

  7. L.A. Ponomarenko, A.K. Geim, A.A. Zhukov, R. Jalil, S.V. Morozov, K.S. Novoselov, I.V. Grigorieva, E.H. Hill, V.V. Cheianov, V.I. Fal’ko, K. Watanabe, T. Taniguchi, R.V. Gorbachev, Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958 (2011)

    Article  Google Scholar 

  8. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. SensorActuat. B Chem. 249, 542–548 (2017)

    Google Scholar 

  9. Y. Yuan, X. Yu, Q. Ouyang, Y. Shao, J. Song, J. Qu, K.T. Yong, Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitiveplasmonic biosensing: theoretical insight. 2D Mater. 5(2), 025015 (2018)

    Article  Google Scholar 

  10. Y. Li, Y. Yuan, X. Peng, J. Song, J. Liu, J. Qu, An ultrasensitive Fano resonance biosensor using two dimensional hexagonal boron nitride nanosheets: theoretical analysis. RSC Advances. 9(51), 29805–29812 (2019)

    Article  Google Scholar 

  11. J.B. Maurya, S. Raikawar, Y.K. Prajapati, J.P. Saini, A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas. Optik. 160, 428–433 (2018)

    Article  ADS  Google Scholar 

  12. S. Pal, A. Verma, S. Raikwar, Y.K. Prajapati, J.P. Saini, Detection of DNA hybridization using black phosphorus-graphene coated SPR Sensor. Appl. Phys. A-Mater. 124(5), 124–394 (2018)

    Article  Google Scholar 

  13. A. Srivastava, A. Verma, R. Das, Y.K. Prajapati, A theoretical approach to improve the performance of SPR Biosensor using MXene and black phosphorus. Optik 203, 163430 (2020)

    Article  ADS  Google Scholar 

  14. S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Influence of black phosphorous on performance of surface Plasmon resonance biosensor. Opt. Quant Electron. 49(12), 403 (2017)

    Article  Google Scholar 

  15. M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C. 5, 2488 (2017)

    Article  Google Scholar 

  16. Y. Bai, K. Zhou, N. Srikanth, J.H.L. Pang, X. He, R. Wang, Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Adv. 6, 35731 (2016)

    Article  Google Scholar 

  17. Y. Yang, S. Umrao, S. Lai, S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTx Film. J. Phys. Chem. Lett. 8(4), 859–865 (2017)

    Article  Google Scholar 

  18. J.J. Zhang, S. Dong, Superconductivity of monolayer Mo2C: the key role of functional groups. J. Chem. Phys. 146, 034705 (2017)

    Article  ADS  Google Scholar 

  19. X.F. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity. ACS Appl. Matter. Inter. 7(14), 11173–11179 (2015)

    Google Scholar 

  20. H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, Z. Zhu, A novel nitrite biosensor based on direct electrochemistry of hemoglobin immobilized on MXene- Ti3C2. Sensor Actuat. B Chem. 207, 801–810 (2015)

    Article  Google Scholar 

  21. L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai, Y. Xiang, Few layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance sensitivity. Sensor Actuat B Chem. 277, 210–215 (2018)

    Article  Google Scholar 

  22. Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, High sensitivity of surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomater. Basel 9, 165 (2019)

    Article  Google Scholar 

  23. R. Kumar, S. Pal, Y.K. Prajapati, J.P. Saini, Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. Silicon (2020). https://doi.org/10.1007/s12633-020-00558-3

    Article  Google Scholar 

  24. R. Kumar, S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 145, 106591 (2020)

    Article  Google Scholar 

  25. J. Xu, J. Shim, J.H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26(29), 5328–5334 (2016)

    Article  Google Scholar 

  26. D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Strain engineering of antimonene by a first-principles study: mechanical and electronic properties. Phys. Rev. B 98, 085410 (2018)

    Article  ADS  Google Scholar 

  27. Y. Cao, V. Fatemi, S. Fang et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018)

    Article  ADS  Google Scholar 

  28. S.O. Kasap, Principle of Electronic Material and Devices, 2nd edn. (Mc Graw-Hill, 2002), pp. 745. ISBN 0-07-239342-4. http://www.mhhe.com

  29. Y. Cai, G. Zhang, Y.W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677–6682 (2014)

    Article  ADS  Google Scholar 

  30. X.M. Wang, S.F. Lan, Optical properties of black phosphorus. Adv. Opt. Photonics. 8, 618–655 (2016)

    Article  ADS  Google Scholar 

  31. S. Pal, A. Verma, J.P. Saini, Y.K. Prajapati, Sensitivity enhancement using silicon-black phosphorus-TDMC Coated surface plasmon resonance biosensor. IETOptoelectron. 13(2), 196–201 (2019)

    Google Scholar 

  32. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 107, 139904 (2015)

    Article  ADS  Google Scholar 

  33. S. Agarwal, Y.K. Prajapati, J.B. Maurya, Effect of metallic adhesion layer thickness on surface roughness for sensing application. IEEE Photonics Technol. Lett. 28(21), 2415–2418 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Project No. 34/14/10/2017-BRNS/34285 by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), and the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Prajapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Verma, A., Prajapati, Y.K. et al. Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl. Phys. A 126, 809 (2020). https://doi.org/10.1007/s00339-020-03998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03998-1

Keywords

Navigation