Skip to main content
Log in

Magnetic field induced formation of ferroelectric β phase of poly (vinylidene fluoride)

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The poly (vinylidene fluoride) PVDF have been fabricated at magnetic fields H of 0, 1, 3, 6 T, respectively. The structure analysis revealed that the PVDF prepared at zero (i.e., H = 0 T) and high magnetic fields (i.e., H = 1, 3 and 6 T) shows a coexistence of γ and α phases and coexistence of β and α phases, respectively. The highest calculated content of the β phase is ~ 40% for all the samples prepared under different magnetic fields. The magnetic field induced tensile stress on the diamagnetic PVDF as revealed by the magnetostriction experiments is suggested to result in the formation of the β phase. The differential scanning calorimetry (DSC) results showed a first increase and then decrease in the crystallinity with increasing strength of magnetic fields. Detailed analysis of the magnetostriction and DSC results shows that the magnetic field effect on the formation of the β phase can be ascribed to the competing effects of tensile strain and crystallization inhibition induced by magnetic fields. Our results suggest a new route to obtain the β phase PVDF for potential practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Gregorio, M. Cestari, J. Polym. Sci. Pol. Phys. 32, 859–870 (1994)

    Article  ADS  Google Scholar 

  2. R. Gregorio, E.M. Ueno, J. Mater. Sci. 34(4489–4500), 4489–4500 (1999)

    Article  ADS  Google Scholar 

  3. A. Linares, J.L. Acosta, Eur. Polym. J. 31, 615–619 (1995)

    Article  Google Scholar 

  4. M.G. Broadhurst, G.T. Davis, Ferroelectrics 60, 3–13 (1984)

    Article  Google Scholar 

  5. R.G. Kepler, R.A. Anderson, J. Appl. Phys. 49, 1232–1235 (1978)

    Article  ADS  Google Scholar 

  6. V. Sencadas, R. Gregorio, S. Lanceros-Mendez, J. Macromol. Sci. B 48, 514–525 (2009)

    Article  Google Scholar 

  7. M.C. Branciforti, V. Sencadas, S. Lanceros-Mendez, R. Gregorio, J. Polym. Sci. Pol. Phys. 45, 2793–2801 (2007)

    Article  ADS  Google Scholar 

  8. A. Peterlin, J.D. Holbrook, Kolloid-Z. 203, 68–69 (1965)

    Article  Google Scholar 

  9. Y. Ishida, M. Watanabe, K. Yamafuji, Kolloid-Z. 200, 48 (1964)

    Article  Google Scholar 

  10. J. Gomes, J.S. Nunes, V. Sencadas, S. Lanceros-Mendez, Smart. Mater. Struct. 19, 065010 (2010)

    Article  Google Scholar 

  11. M. Sharma, G. Madras, S. Bose, PCCP 16, 14792–14799 (2014)

    Article  ADS  Google Scholar 

  12. D.M. Esterly, B.J. Love, J. Polym, Sci. Pol. Phys. 42, 91–97 (2004)

    Article  Google Scholar 

  13. D.C. Yang, Y. Chen, J. Mater. Sci. Lett. 6, 599–603 (1987)

    Article  Google Scholar 

  14. A. Gradys, P. Sajkiewicz, S. Adamovsky, A. Minakov, C. Schick, Thermochim. Acta. 461, 153–157 (2007)

    Article  Google Scholar 

  15. A. Jain, S.J. Kumar, D.R. Mahapatra, H.H. Kumar, Proc Spie 7647, 76472C (2010)

    Article  Google Scholar 

  16. H.J. Ye, L. Yang, W.Z. Shao, S.B. Sun, L. Zhen, Rsc. Adv. 3, 23730–23736 (2013)

    Article  Google Scholar 

  17. R.P. Vijayakumar, D.V. Khakhar, A. Misra, J. Appl. Polym. Sci. 117, 3491–3497 (2010)

    Google Scholar 

  18. S. Debili, A. Gasmi, M. Bououdina, Appl. Phys. A 126, 309 (2020)

    Article  ADS  Google Scholar 

  19. S.S. Yu, W.T. Zheng, W.X. Yu, Y.J. Zhang, Q. Jiang, Z.D. Zhao, Macromolecules 42, 8870–8874 (2009)

    Article  ADS  Google Scholar 

  20. L.H. He, J. Sun, X.X. Wang, L. Yao, J.L. Li, R. Song, Y.M. Hao, Y.J. He, W. Huang, J. Colloid. Interf. Sci. 363, 122–128 (2011)

    Article  ADS  Google Scholar 

  21. V. Sencadas, C.M. Costa, V. Moreira, J. Monteiro, S.K. Mendiratta, J.F. Mano, S. Lanceros-Mendez, e-Polymers 2, 2 (2005)

    Google Scholar 

  22. V. Sencadas, R. Barbosa, J.F. Mano, S. Lanceros-Mendez, Ferroelectrics 294, 61–71 (2003)

    Article  Google Scholar 

  23. E. Fukada, Ieee. T. Ultrason. Ferr. 47, 1277–1290 (2000)

    Article  Google Scholar 

  24. Y. Ye, Y.D. Jiang, Z.M. Win, H.J. Zeng, Integr. Ferroelectr. 80, 245–251 (2006)

    Article  Google Scholar 

  25. N. Meng, X.T. Ren, G. Santagiuliana, L. Ventura, H. Zhang, J.Y. Wu, H.X. Yan, M.J. Reece, E. Bilotti, Nat. Commun. 10, 4535 (2019)

    Article  ADS  Google Scholar 

  26. S.P. Muduli, S. Parida, S.K. Rout, S. Rajput, M. Kar, Mater. Res. Express 6, 095306 (2019)

    Article  ADS  Google Scholar 

  27. T. Pickford, X. Gu, E.L. Heeley, C.Y. Wan, Cryst. Eng. Comm. 21, 5418–5428 (2019)

    Article  Google Scholar 

  28. S.L. Jiang, H.Y. Wan, H. Liu, Y.K. Zeng, J.G. Liu, Y.Y. Wu, G.Z. Zhang, Appl. Phys. Lett. 109, 154–158 (2016)

    Google Scholar 

  29. N.J. Turro, M.F. Chow, C.J. Chung, C.H. Tung, J. Am. Chem. Soc. 105, 1572–1577 (1983)

    Article  Google Scholar 

  30. W. Ding, L. Hu, J.M. Dai, X.W. Tang, R.H. Wei, Z.G. Sheng, C.H. Liang, D.F. Shao, W.H. Song, Q.N. Liu, M.Z. Chen, X.G. Zhu, S.L. Chou, X.B. Zhu, Q.W. Chen, Y.P. Sun, S.X. Dou, ACS Nano 13, 1694–1702 (2019)

    Google Scholar 

  31. J. Wang, Q.W. Chen, C. Zeng, B.Y. Hou, Adv. Mater. 16, 137–140 (2004)

    Article  Google Scholar 

  32. L. Hu, R.R. Zhang, Q.W. Chen, Nanoscale 6, 14064–14105 (2014)

    Article  ADS  Google Scholar 

  33. D.E. Farrell, B.S. Chandrasekhar, M.R. Deguire, M.M. Fang, V.G. Kogan, J.R. Clem, D.K. Finnemore, Phys. Rev. B 36, 4025–4027 (1987)

    Article  ADS  Google Scholar 

  34. Z.B. He, Y. Shu-Hong, X.Y. Zhou, X.G. Li, J.F. Qu, Adv. Funct. Mater. 16, 1105–1111 (2006)

    Article  Google Scholar 

  35. J.H. Wang, Y.W. Ma, K. Watanabe, Chem. Mater. 20, 20–22 (2008)

    Article  Google Scholar 

  36. P. Dai, T.T. Yan, L. Hu, Z.W. Pang, Z.W. Bao, M.Z. Wu, G. Li, J. Fang, Z.M. Peng, J. Mater, Chem. A 5, 19203–19209 (2017)

    Google Scholar 

  37. D.S. Bag, S. Maiti, Polymer 39, 525–531 (1998)

    Article  Google Scholar 

  38. A.P. Chiriac, C.I. Simionescu, Prog. Polym. Sci. 25, 219–258 (2000)

    Article  Google Scholar 

  39. A.C. Lopes, C.M. Costa, C.J. Tavares, I.C. Neves, S. Lanceros-Mendez, J. Phys, Chem. C 115, 18076–18082 (2011)

    Google Scholar 

  40. M.P. Silva, V. Sencadas, G. Botelho, A.V. Machado, A.G. Rolo, J.G. Rocha, S. Lanceros-Mendez, Mater. Chem. Phys. 122, 87–92 (2010)

    Article  Google Scholar 

  41. J.H. Wendorff, J. Polym. Sci. Pol. Lett. 18, 439–445 (1980)

    Article  Google Scholar 

  42. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)

    Article  Google Scholar 

  43. V. Sencadas, R. Gregorio, S. Lanceros-Mendez, J. Non-Cryst, Solids 352, 2226–2229 (2006)

    Google Scholar 

  44. V. Sencadas, S. Lanceros-Mendez, J.F. Mano, Thermochim. Acta. 424, 201–207 (2004)

    Article  Google Scholar 

  45. S. Yanagiya, G. Sazaki, S.D. Durbin, S. Miyashita, K. Nakajima, H. Komatsu, K. Watanabe, M. Motokawa, J. Cryst. Growth 208, 645–650 (2000)

    Article  ADS  Google Scholar 

  46. W.W. Mullins, Acta. Metall. Mater. 4, 421–432 (1956)

    Article  Google Scholar 

  47. D.A. Molodov, P.J. Konijnenberg, Scripta Mater. 54, 977–981 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11874360, 11374304, and 11274313, Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH015) and the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences Large-Scale Scientific Facility under Grant Nos. U1532152 and U1432137.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Yin or Wenhai Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Sun, X., Zhu, S. et al. Magnetic field induced formation of ferroelectric β phase of poly (vinylidene fluoride). Appl. Phys. A 126, 624 (2020). https://doi.org/10.1007/s00339-020-03803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03803-z

Keywords

Navigation