Skip to main content

Advertisement

Log in

Fluorescent carbon nanoparticles from laser-ablated Bougainvillea alba flower extract for bioimaging applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study employed laser ablation to obtain fluorescent carbon nanoparticles (CNPs) using inexpensive and easily available Bougainvillea alba flower juice extract as the source. The laser ablation of flower juice extract was carried out using 355 nm wavelength of Nd: YAG pulsed laser for 60 min. HR-TEM studies showed the presence of both larger (about 60 nm) and smaller size (about 10 nm) CNPs and average particle size was found to be about 25 nm. Crystalline structure was also observed in CNPs, whose interplanar lattice spacing was 0.27 nm, indicating the contracted lattice spacing from usual graphitic structure. XRD and Raman analysis showed that the crystalline CNPs correspond to non-perfect graphitic carbon structure. Optical spectroscopic studies revealed the down-conversion of photoluminescence emission at 485 nm under the excitation wavelength of 400 nm. The average fluorescence lifetime of carbon nanoparticles was estimated as 1.1 ns from time-resolved spectroscopy. The CNPs were found to be non-toxic to human vein endothelial cells and internalized into the cells with high intensity up to 24 h. Two distinct PL emissions were observed with the large particles emitting at the longer wavelength localized predominantly in the cytosol and smaller particles emitting at the shorter wavelength concentrated on the nuclear membrane. The results suggest that the CNPs are biocompatible and have the potential for bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.-X. Li, C. Yu, C.-F. Wang, S. Chen, Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. J. Mater. Sci. 48, 6307–6311 (2013)

    Article  ADS  Google Scholar 

  2. S.C. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles synthesis, characterization, and bioimaging application. J. Phys. Chem. C 113, 18546–18551 (2009)

    Article  Google Scholar 

  3. Z.C. Yang, M. Wang, A.M. Yong, S.Y. Wong, X.H. Zhang, H. Tan, J. Wan, Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47(42), 11615–11617 (2011)

    Article  Google Scholar 

  4. B. Chen, F. Li, S. Li, W. Weng, H. Guo, T. Guo et al., Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale 5, 1967–1971 (2013)

    Article  ADS  Google Scholar 

  5. X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 21, 2445–24451 (2011)

    Article  Google Scholar 

  6. H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee et al., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605–609 (2011)

    Article  Google Scholar 

  7. Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36, 861–864 (2012)

    Article  Google Scholar 

  8. X. Zheng, H. Wang, Q. Gong, L. Zhang, G. Cui, Q. Li et al., Highly luminescent carbon nanoparticles as yellow emission conversion phosphors. Mater. Lett. 143, 290–293 (2015)

    Article  Google Scholar 

  9. L.-H. Mao, W.-Q. Tang, Z.-Y. Deng, S.-S. Liu, C.-F. Wang, S. Chen, Facile access to white fluorescent carbon dots toward light-emitting devices. Ind. Eng. Chem. Res. 53, 6417–6425 (2014)

    Article  Google Scholar 

  10. D. Reyes-Contreras, M. Camacho-López, M.A. Camacho-López, S. Camacho-López, R.I. Rodríguez-Beltrán, M. Mayorga-Rojas, Influence of the per pulse laser fluence on the optical properties of carbon nanoparticles synthesized by laser ablation of solids in liquids. Opt. Laser Technol. 74, 48–52 (2015)

    Article  ADS  Google Scholar 

  11. S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, X.-W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19, 484–488 (2009)

    Article  Google Scholar 

  12. C. Donate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernandez-Alonso, G. Minguez-Vega, Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega 3, 2735–2742 (2018)

    Article  Google Scholar 

  13. L. Zhu, Y. Yin, C.-F. Wang, S. Chen, Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J. Mater. Chem. C 1, 4925–4932 (2013)

    Article  Google Scholar 

  14. S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48, 8835–8837 (2012)

    Article  Google Scholar 

  15. H. Li, X. He, Y. Liu, H. Yu, Z. Kang, S.-T. Lee, Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 46, 147–151 (2011)

    Article  Google Scholar 

  16. Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao et al., One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 48, 380–382 (2012)

    Article  Google Scholar 

  17. V. Ramar, S. Moothattu, K. Balasubramanian, Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: a green way to remove pollution. Sol. Energy 169, 120–127 (2018)

    Article  ADS  Google Scholar 

  18. T. Wang, Y. Zhai, Y. Zhu, C. Li, G. Zeng, A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247 (2018)

    Article  Google Scholar 

  19. M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289 (2009)

    Article  Google Scholar 

  20. L. Escobar-Alarcón, M.E. Espinosa-Pesqueira, D.A. Solis-Casados, J. Gonzalo, J. Solis, M. Martinez-Orts et al., Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field. Appl. Phys. A 124, 141–148 (2018)

    Article  ADS  Google Scholar 

  21. A.K. Narasimhan, S.B. Lakshmi, T.S. Santra, M.S.R. Rao, G. Krishnamurthi, Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv. 7, 53822–53829 (2017)

    Article  Google Scholar 

  22. J. Zhang, Z. Gan, G. Hu, Y. Tang, L. Zhou, Q. Jiang et al., The luminescent carbon nanoparticles with controllable oxygen-related functional groups prepared by pulsed laser ablation in water. Mod. Phys. Lett. B 30, 1650320–1650329 (2016)

    Article  ADS  Google Scholar 

  23. S. Welz, M.J. McNallan, Y. Gogotsi, Carbon structures in silicon carbide derived carbon. J. Mater. Process. Technol. 179, 11–22 (2006)

    Article  Google Scholar 

  24. N. Zheng, S. Ding, X. Zhou, Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application. Colloids Surf. B 142, 123–129 (2016)

    Article  Google Scholar 

  25. J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun et al., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007)

    Article  Google Scholar 

  26. X. Guo, C.F. Wang, Z.Y. Yu, L. Chen, S. Chen, Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem. Commun. 48, 2692–2694 (2012)

    Article  Google Scholar 

  27. C. Albu, P. Horlescu, C. Stan, M. Popa, fluorescent carbon dots prepared through thermal processing of succinimide. Digest J. Nanomater. Biostruct. 11, 133–139 (2016)

    Google Scholar 

  28. T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, J.-J. Shim, Y.R. Lee, Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J. Photochem. Photobiol. B 161, 154–161 (2016)

    Article  Google Scholar 

  29. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, D.-W. Pang, Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 41, 5116–5118 (2008)

    Article  Google Scholar 

  30. R. Atchudan, T.N.J.I. Edison, M.G. Sethuraman, Y.R. Lee, Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl. Surf. Sci. 384, 432–441 (2016)

    Article  ADS  Google Scholar 

  31. Z.-Q. Xu, L.-Y. Yang, X.-Y. Fan, J.-C. Jin, J. Mei, W. Peng et al., Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon 66, 351–360 (2014)

    Article  Google Scholar 

  32. L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, S. Chen, Nanosized carbon particles from natural gas soot. Chem. Mater. 21, 2803–2809 (2009)

    Article  Google Scholar 

  33. V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B Chem. 213, 434–443 (2015)

    Article  Google Scholar 

  34. J. Yu, N. Song, Y.-K. Zhang, S.-X. Zhong, A.-J. Wang, J. Chen, Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sens. Actuators B Chem. 214, 29–35 (2015)

    Article  Google Scholar 

  35. H. Ding, Y. Ji, J.-S. Wei, Q.-Y. Gao, Z.-Y. Zhou, H.-M. Xiong, Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J. Mater. Chem. B 5, 5272–5277 (2017)

    Article  Google Scholar 

  36. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  Google Scholar 

  37. M.T.H. Aunkor, I.M. Mahbubul, R. Saidur, H.S.C. Metselaar, The green reduction of graphene oxide. RSC Adv. 6, 27807–27828 (2016)

    Article  Google Scholar 

  38. T. Lin, K. Chih, C. Yuan, J. Shen, C. Lin, W. Liu, Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale 7, 2708–2715 (2015)

    Article  ADS  Google Scholar 

  39. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009–17019 (2011)

    Article  Google Scholar 

  40. F.T. Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)

    Article  Google Scholar 

  41. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  42. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143–36150 (2016)

    Article  ADS  Google Scholar 

  43. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, I. Visoly-Fisher, Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7, 45030–45044 (2017)

    Article  ADS  Google Scholar 

  44. G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)

    Article  Google Scholar 

  45. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  46. B. Manoj, A.M. Raj, G.T. Chirayil, Tunable direct band gap photoluminescent organic semiconducting nanoparticles from lignite. Sci. Rep. 7, 18012 (2017)

    Article  ADS  Google Scholar 

  47. A. Ferrari, J. Robertson, Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405–121409 (2001)

    Article  ADS  Google Scholar 

  48. H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther, The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911–917 (2004)

    Article  Google Scholar 

  49. Y. Pitakpawasutthi, C. Palanuvej, N. Ruangrungsi, Quality evaluation of Kaempferia parviflora rhizome with reference to 5,7-dimethoxyflavone. J. Adv. Pharm. Technol. Res. 9, 26–31 (2018)

    Article  Google Scholar 

  50. S. Chandra, P. Das, S. Bag, D. Laha, P. Pramanik, Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3, 1533–1540 (2011)

    Article  ADS  Google Scholar 

  51. X. Wen, P. Yu, Y.-R. Toh, Y.-C. Lee, A.-C. Hsu, J. Tang, Near-infrared enhanced carbon nanodots by thermally assisted growth. Appl. Phys. Lett. 101, 163107 (2012)

    Article  ADS  Google Scholar 

  52. M.A. Alonso, J. Millán, The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114, 3957–3965 (2001)

    Google Scholar 

  53. X. Chen, P.B. Davis, Cell entry of DNA nanoparticles via lipid-raft mediated, but Clathrin-and dynamin-independent endocytosis, molecular therapy, nature publishing group 75 varick st, 9th flr, New York, ny 10013–1917 USA, pp. S50-S (2009)

  54. A.R. Maity, D. Stepensky, Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface. J. Controlled Release 257, 32–39 (2017)

    Article  Google Scholar 

  55. Y.K. Jung, E. Shin, B.S. Kim, Cell nucleus-targeting zwitterionic carbon dots. Sci. Rep. 5, 18807 (2015)

    Article  ADS  Google Scholar 

  56. D. Werner, S. Hashimoto, Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles. J. Phys. Chem. C 115, 5063–5072 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank National Institute of Technology, Tiruchirappalli for the infrastructural support. Dr. Manju Bhargavi Gumpu expresses sincere thanks to Science and Engineering Research Board (SERB), Department of Science and Technology for support of the work under National Post-Doctoral Fellowship (PDF/2017/001206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sastikumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogesh, G.K., Shuaib, E.P., Roopmani, P. et al. Fluorescent carbon nanoparticles from laser-ablated Bougainvillea alba flower extract for bioimaging applications. Appl. Phys. A 125, 379 (2019). https://doi.org/10.1007/s00339-019-2673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2673-y

Navigation