Skip to main content
Log in

Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the growth of flower-like ferromagnetic Cu-doped ZnO (CZO) nanostructures using electrochemical deposition on FTO-coated glass substrates. X-ray photoelectron spectroscopy studies affirmed the presence of Cu in ZnO with an oxidation state of 2+. In order to find the optimized dopant concentration, different Cu dopant concentrations of 0.28, 0.30, 0.32, 0.35, 0.38, and 0.40 mM are applied and their magnetic, optical, and electrical properties are studied. Magnetic moment increased with the increasing dopant concentration up to 0.35 mM and then decreased with further increase in the concentration. Diamagnetic pure ZnO showed ferromagnetic nature even with a low doping concentration of 0.28 mM. Band gap increased with the increasing Cu concentration until a value of 0.35 mM and then remained the same for the higher dopant concentrations. It is ascribed to the Burstein–Moss effect. Defect-related broad photoluminescence (PL) peak is observed for the pure ZnO in the visible range. In contrast, Cu-doped samples showed a sharp and intense PL peak at 426 nm due to increased Zn interstitials. Kelvin probe measurements revealed that the Fermi level shifts toward the conduction band for the Cu-doped samples with respect to pure material. Electron transport mechanism in the samples is observed to be dominated by space charge-limited current and Schottky behavior with improved ideality factor up to 0.38 mM Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951–956 (1998)

    Article  ADS  Google Scholar 

  2. T. Yu-Feng, H. Su-Jun, Y. Shi-shen, M. Liang-Mo, Chin. Phys. B 22, 088505 (2013)

    Article  ADS  Google Scholar 

  3. P. Dutta, M.S. Seehra, Y. Zhang, I. Wender, J. Appl. Phys 103, 07D104 (2008)

    Article  Google Scholar 

  4. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988–990 (2001)

    Article  ADS  Google Scholar 

  5. G.L. Liu, Q. Cao, J.X. Deng, P.F. Xing, Y.X. Chen, S.S. Yan, L.M. Mei, Appl. Phys. Lett. 90, 052504 (2007)

    Article  ADS  Google Scholar 

  6. T.C. Droubay, D.J. Keavney, T.C. Kaspar, S.M. Heald, C.M. Wang, C.A. John-son, K.M. Whitaker, D.R. Gamelin, S.A. Chambers, Phys. Rev. B 79, 217206 (2009)

    Google Scholar 

  7. X.X. Wei, C. Song, W.K. Geng, B. He, F. Pan, J. Phys. 18, 7471–7479 (2006)

    Google Scholar 

  8. D.B. Buchholz, R.P.H. Chang, J.H. Song, J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005)

    Article  ADS  Google Scholar 

  9. G.Z. Xing, J.B. Ji, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, J.S. Wang, T.C. Sum, A.H.C. Huan, T. Wu, Adv. Mater. 20, 3521–3527 (2008)

    Article  Google Scholar 

  10. J.M.D. Coey, M. Venkatesan, B.C. Fitzgerald, Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  11. V. Bonu, A. Das, M. Sardar, S. Dhara, K.A. Tyagi, J. Mater. Chem. C 3, 1261–1267 (2015)

    Article  Google Scholar 

  12. G.P. Dransfield, Radiat. Prot. Dosim. 91, 271 (2000)

    Article  Google Scholar 

  13. D.R. Clarke, J. Am. Ceram. Soc. 82, 485–502 (1999)

    Article  Google Scholar 

  14. J.F. Wager, Science 300, 1245–1246 (2003)

    Article  Google Scholar 

  15. T. Dietl, H. Ohno, MRS Bull. 28, 714–719 (2003)

    Article  Google Scholar 

  16. L.S. Mende, J. L. MacManus-Driscoll, Mater. Today 10, 40–48 (2007)

    Article  Google Scholar 

  17. A.B. Djurisic, Y.H. Leung, Small 2, 944–961 (2006)

    Article  Google Scholar 

  18. O. Lupan, T. Pauporté, L.T. Bahers, B. Viana, I. Ciofini, Adv. Funct. Mater. 21, 3564–3572 (2011)

    Article  Google Scholar 

  19. T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187–251 (2014)

    Article  ADS  Google Scholar 

  20. M.H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, J. Nause, C.R. Vestal, Z.J. Zhang, I.T. Fergusona, J. Appl. Phys. 97, 023906 (2005)

    Article  ADS  Google Scholar 

  21. K. Sato, H. Katayama-Yoshida, P.H. Dederichs, Jpn. J. Appl. Phys. 44, L948–L951 (2005)

    Article  ADS  Google Scholar 

  22. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 92, 6066–6071 (2002)

    Article  ADS  Google Scholar 

  23. M. Tay, Y. Wua, G.C. Han, T.C. Chong, Y.K. Zheng, S.J. Wang, Y. Chen, X. Pan, J. Appl. Phys. 100, 063910 (2006)

    Article  ADS  Google Scholar 

  24. Q. Ma, D.B. Buchholz, R.P.H. Chang, Phys. Rev. B 78, 214429 (2008)

    Article  ADS  Google Scholar 

  25. L.M. Huaung, A.L. Rosa, R. Ahuja, Phys. Rev. B 74, 075206 (2006)

    Article  ADS  Google Scholar 

  26. M Younas, J Shen, M He, R Lortz, F Azad, M.J. Akthar, A. Maqsood, F.C.C. Ling, RSC Adv. 5, 55648–55657 (2015)

    Article  Google Scholar 

  27. K. Sato, H. Katayama-Yoshida, J. Appl. Phys. 39, L555–L558 (2000)

    Article  ADS  Google Scholar 

  28. X.-L. Li, X.-H. Xu, Z.-Y. Quan, F.J. Guo, H.-S. Wu, G.A. Gehring, J. Appl. Phys. 105, 103914 (2009)

    Article  ADS  Google Scholar 

  29. T.S. Herng, S.P. Lau, S.F. Yu, J.S. Chen, K.S. Teng, J. Magn. Magn. Mater. 315, 107–110 (2007)

    Article  ADS  Google Scholar 

  30. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Appl. Phys. Lett. 90, 142502 (2007)

    Article  ADS  Google Scholar 

  31. O. Lupan, T. Papuporté, B. Viana, P. Aschehoug, Electrochim. Acta 56, 10543–10549 (2011)

    Article  Google Scholar 

  32. O. Lupan, T. Papuporté, B. Viana, Adv. Mater. 22, 3298–3302 (2010)

    Article  Google Scholar 

  33. V.A. Karpina, V.I. Lazorenko, C.V. Lakshakrev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A.A. Pustovoytov, Ju Karpenko, S.A. Eremin, P.M. Lytvyn, V.P. Ovsyannikov, E.A. Mazurenko, Cryst. Res. Technol. 39, 980–992 (2004)

    Article  Google Scholar 

  34. M. Law, L.E.G. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)

    Article  ADS  Google Scholar 

  35. A. Simimol, A.A. Anappara, S. Greulich-Weber, P. Chowdhury, H.C. Barshilia, J. Appl. Phys. 117, 214310 (2015)

    Article  ADS  Google Scholar 

  36. E. Matei, I. Enculescu, V. Vasilache, C.M. Teodorescu, Phys. Status Solidi A 207, 2517–2522 (2010)

    Article  ADS  Google Scholar 

  37. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology 15, 622–626 (2004)

    Article  ADS  Google Scholar 

  38. D. Gao, G. Yang, J. Li, J. Zhang, D. Xue, J. Phys. Chem. C 114, 18347 (2010)

    Article  Google Scholar 

  39. O. Lupan, L. Chow, L.K. Ono, B. RoldanCuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, J. Phys. Chem. C 114, 12401–12408 (2010)

    Article  Google Scholar 

  40. B.E. Goodby, J.E. Pemborton, Appl. Spectrosc. 42, 754 (1988)

    Article  ADS  Google Scholar 

  41. L. Chow, O. Lupan, G. Chai, H. Khallaf, L. K. Ono, B. RoldanCuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Sensors Actuators A 189, 399–408 (2013)

    Article  Google Scholar 

  42. T Matsuhisa, in Catalysis, A Specialist Periodical Report, vol. 12, Chap. 1, ed. by J.J. Spivey (The Royal Society of Chemistry, Cambridge, 1996)

    Google Scholar 

  43. B. Yang, P. Feng, A. Kumar, R.S. Katiyar, M. Achermann, J. Phys. D 42, 195402 (2009)

    Article  ADS  Google Scholar 

  44. C.H. Xia, C.G. Hu, C.H. Hu, Z. Ping, F. Wang, Bull. Mater. Sci. 34, 1083–1087 (2011)

    Article  Google Scholar 

  45. N. Tahir, A. Karim, K.A. Persson, S.T. Hussain, A.G. Cruz, M. Usman, M. Naeem, R. Qiao, W. Yang, Y.D. Chuang, Z. Hussain, J. Phys. Chem. C 117, 8968 (2013)

    Article  Google Scholar 

  46. X. Wang, R. Zehng, Z. Liu, H. Ho, J. Xu, S.P. Ringer, Nanotechnology 19, 455702 (2008)

    Article  ADS  Google Scholar 

  47. J.J. Beltran, C.A. Barrero, A. Punnoose, J. Phys. Chem. C 120, 8969–8978 (2008)

    Article  Google Scholar 

  48. U.P.S. Gahlaut, V. Kumar, R.K. Pandey, Y. C. Goswani, Optik Int. J. Light Electron Optics, 127, 4292–4295 (2016)

    Article  Google Scholar 

  49. R. Sangeetha, S. Muthukumaran, M. Ashokkumar, J Mater Sci. 26, 8108–8117 (2015)

    Google Scholar 

  50. T.S. Herg, D.C. Qi, T. Berlijin, J.B. Yi, K.S. Yang, Y. Dai, Y.P. Feng, I. Santoso, C. Sánchez-Hanke, X.Y. Gao, A.T.S. Wee, W. Ku, J. Ding, A. Rusydi, Phys. Rev. Lett. 105, 207201 (2010)

    Article  ADS  Google Scholar 

  51. K Joshi, M Rawat, S.K. Gautam, R.G. Singh, R.C. Ramo, J. Alloys. Compd. 680, 252–258 (2016)

    Article  Google Scholar 

  52. A.. A Ghosh, N. Kumari, A. Bhattacharjee, J. Nanosci. Nanotechnol. 2, 485–489 (2014)

    Google Scholar 

  53. M. Bedir, M. Oztas, A.N. Yazici, E.V. Kafadar, Chin. Phys. Lett. 23, 939–942 (2006)

    Article  Google Scholar 

  54. M. Oztas, M. Bedir, Thin Solid Films 516, 1703–1709 (2008)

    Article  ADS  Google Scholar 

  55. K.J. Kim, Y.R. Parkn, Appl. Phys. Lett. 78, 475–479 (2001)

    Article  ADS  Google Scholar 

  56. H. Zhu, J. Iqbal, H. Xu, D. Yu, J. Chem. Phys. 129, 124713 (2008)

    Article  ADS  Google Scholar 

  57. F.H. Su, Y.F. Liu, W. Chen, W.J. Wang, K. Ding, G.H. Li, A.G. Joly, D.E. McCready, J. Appl. Phys 100, 013107 (2006)

    Article  ADS  Google Scholar 

  58. S. Kuriakose, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)

    Article  Google Scholar 

  59. N.S. Ramgir, P.K. Sharma, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sensors Actuators B 186, 718–726 (2013)

    Article  Google Scholar 

  60. S.H. Cheng, C.F. Yu, Y.S. Lin, W.J. Xie, T.W. Hsu, D.P. Tsai, J. Appl. Phys. 104, 114314 (2008)

    Article  ADS  Google Scholar 

  61. L.J. Brillson, Y. Lu, J. Appl. Phys. 109, 121301 (2011)

    Article  ADS  Google Scholar 

  62. J.D. Hwang, Y.L. Lin, C.T. Kung, Nanotechnology 24, 115709 (2013)

    Article  ADS  Google Scholar 

  63. N. Datta, N.S. Ramgir, S. Kumar, P. Veerender, M. Kaur, S Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sensors Actuators B 202, 1270–1280 (2014)

    Article  Google Scholar 

  64. Z. Ahmad, H.M. Sayyad, Optoelectron. Adv. Mater. 3, 509–512 (2009)

    Google Scholar 

  65. R. Zamiri, B. Singh, M.S. Belsley, J.M.F. Ferreira, Ceram. Int. 40, 6031–6036 (2012)

    Article  Google Scholar 

  66. M. Ashokkumar, S. Muthukumaran, J. Lumin 162, 97–103 (2015)

    Article  Google Scholar 

  67. Y. Caglar, F. Yakuphanoglu, S. Ilican, M. Caglar, J. Optoelectron. Adv. Mater. 10, 2584–2587 (2008)

    Google Scholar 

  68. J. H. Werner, Appl. Phys. A 47, 291–300 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Siju, Mr. G. Srinivas, Mr. Praveen Kumar V, Mr.Benjamin Hudson Baby, Dr. Prasanth Chowdhury, and Dr. P. Bera of SED/NAL, Bangalore, for the FESEM, UV–VIS, 3D Profilometer, PL, VSM, and XPS. We thank Mr. Prabhanjan D Kulkarni, Dr. Arvind Kumar, and Dr. Venkataramana Bonu for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish C. Barshilia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niranjan, K., Dutta, S., Varghese, S. et al. Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Appl. Phys. A 123, 250 (2017). https://doi.org/10.1007/s00339-017-0890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0890-9

Keywords

Navigation