Skip to main content
Log in

Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on excitation of the photoluminescence of lithium fluoride by means of the surface plasmon resonance of Al layer. Advantage of this method is high efficiency of the excitation, which is applicable to ultra-thin films. P-polarized UV diode laser light is coupled to the surface plasmon resonance using a fused silica prism in Kretschmann configuration. The angular dependence of the reflected intensity is measured using a theta–2theta goniometer. The surface plasmon at resonance condition induces photoluminescence in the adjacent lithium fluoride layer. The fluoride layers were deposited on Al-coated fused silica substrates by electron beam evaporation. For the experiment, we prepared several samples with thickness ranging from 20 to 71 nm. We studied the effect of the luminescence enhancement by the surface plasmon resonance effect. Strong quenching effect was observed in the thinnest LiF layer. Influence of X-ray irradiation on the photoluminescence was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Baldacchini, J. Lumin. 100, 333 (2002)

    Article  Google Scholar 

  2. M. Montecchi, E. Nichelatti, A. Mancini, R.M. Montereali, J. Appl. Phys. 86, 3745 (1999)

    Article  ADS  Google Scholar 

  3. E. Nichelatti, F. Bonfigli, A.Y. Faenov, F. Flora, T. Marolo, M. Montecchi, R.M. Montereali, T. Pikuz, G. Baldacchini, J. Non Cryst. Solids 351, 1774 (2005)

    Article  ADS  Google Scholar 

  4. M.A. Vincenti, T. Marolo, R.M. Montereali, Radiat. Meas. 45, 359 (2010)

    Article  Google Scholar 

  5. R.M. Montereali, F. Bonfigli, M. Piccinini, E. Nichelatti, M.A. Vincenti, J. Lumin. 170, 761 (2016)

    Article  Google Scholar 

  6. J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuators B 54, 3 (1999)

    Article  Google Scholar 

  7. M. Kikawada, A. Ono, W. Inami, Y. Kawata, Appl. Phys. Lett. 104, 223703 (2014)

    Article  ADS  Google Scholar 

  8. E. Kretschmann, Z. Phys. 241, 313 (1971)

    Article  ADS  Google Scholar 

  9. A. Otto, Z. Phys. 216, 398 (1968)

    Article  ADS  Google Scholar 

  10. A. Ono, M. Kikawada, R. Akimoto, W. Inami, Y. Kawata, Opt. Express 21, 17447 (2013)

    Article  ADS  Google Scholar 

  11. J. Enderlein, T. Ruckstuhl, Opt. Express 13, 8855 (2005)

    Article  ADS  Google Scholar 

  12. N. Calander, J. Phys. Chem. B 109, 13957 (2005)

    Article  Google Scholar 

  13. S.D. Choudhury, R. Badugu, J.R. Lakowicz, Acc. Chem. Res. 48, 2171 (2015)

    Article  Google Scholar 

  14. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, J.R. Lakowicz, J. Phys. Chem. B 108, 12073 (2004)

    Article  Google Scholar 

  15. H.A. Macleod, Thin Film Optical Filters, 3rd edn. (Institute of Physics Publishing, Bristol, 2001)

    Book  Google Scholar 

  16. P.K. Maharana, S. Bharadwaj, R. Jha, J. Appl. Phys. 114, 014304 (2013)

    Article  ADS  Google Scholar 

  17. H.R. Gwon, S.H. Lee, Mater. Trans. 51, 1150 (2010)

    Article  Google Scholar 

  18. F.-C. Chien, S.-J. Chen, Biosens. Bioelectron. 20, 633 (2004)

    Article  Google Scholar 

  19. M. Novotny, J. Bulir, J. Lancok, P. Pokorny, M. Bodnar, J. Nanophotonics 5, 051503 (2011)

    Article  ADS  Google Scholar 

  20. E.D. Palik, Handbook of Optical Constants, vol. 1 (Academic Press, New York, 1985)

    Google Scholar 

  21. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  22. V. Zielasek, T. Hildebrandt, M. Henzler, Phys. Rev. B 62, 2912 (2000)

    Article  ADS  Google Scholar 

  23. A.P. Voitovich, V.S. Kalinov, A.P. Stupak, A.N. Novikov, L.P. Runets, J. Lumin. 157, 28 (2015)

    Article  Google Scholar 

  24. F. Bonfigli, M.A. Vincenti, S. Almaviva, R.M. Montereali, E. Nichelatti, R.N. Nogueira, H.J. Kalinowski, Appl. Opt. 48, G38 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Czech Science Foundation, project GAP108/11/1312 and by Ministry of Education Youth and Sports, project LM2011029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Bulíř.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulíř, J., Zikmund, T., Novotný, M. et al. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration. Appl. Phys. A 122, 412 (2016). https://doi.org/10.1007/s00339-016-9971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9971-4

Keywords

Navigation