Skip to main content
Log in

Phase diagrams of a transverse cubic nanowire with diluted surface shell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effective-field theory with correlations based on the probability distribution technique has been used to investigate the phase diagrams (critical and compensation temperatures) of a transverse antiferromagnetic spin-\(\frac{1}{2}\) Ising cubic nanowire with diluted surface shell. It is found that the phase diagrams of the system are strongly affected by the surface shell parameters. Indeed, two compensation points appear for certain values of Hamiltonian parameters, and the range of appearance of these latter points depends strongly on the surface shell transverse field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. López-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogués, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1–32 (2015)

    Article  ADS  Google Scholar 

  2. M.J. Benitez, O. Petracic, E.L. Salabas, F. Radu, H. Tüysüz, F. Schüth, H. Zabel, Evidence for core–shell magnetic behavior in antiferromagnetic Co3O4 nanowires. Phys. Rev. Lett. 101, 097206 (2008)

    Article  ADS  Google Scholar 

  3. M. Keskin, N. Şarlı, B. Deviren, Hysteresis behaviors in a cylindrical Ising nanowire. Solid State Commun. 151, 1025–1030 (2011)

    Article  ADS  Google Scholar 

  4. S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, F. Dujardin, J.J. de Miguel, Hysteresis loops and susceptibility of a transverse Ising nanowire. J. Magn. Magn. Mater. 324, 2434–2441 (2012)

    Article  ADS  Google Scholar 

  5. L.-M. Liu, W. Jiang, Z. Wang, H.-Y. Guan, A.-B. Guo, Magnetization and phase diagram of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 324, 4034–4042 (2012)

    Article  ADS  Google Scholar 

  6. Y. Yüksel, Ü. Akıncı, H. Polat, Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire. Phys. Status Solidi B 250, 196–206 (2013)

    Article  ADS  Google Scholar 

  7. W. Jiang, X.-X. Li, L.-M. Liu, Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E 53, 29–35 (2013)

    Article  Google Scholar 

  8. W. Jiang, X.-X. Li, L.-M. Liu, J.-N. Chen, F. Zhang, Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)

    Article  ADS  Google Scholar 

  9. X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 C and their magnetic properties. Carbon 48, 365–376 (2010)

    Article  Google Scholar 

  10. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, A novel carbon nanotubes/Fe3O4 inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties. J. Magn. Magn. Mater. 323, 1006–1010 (2011)

    Article  ADS  Google Scholar 

  11. N. Şarlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube. Phys. B 411, 12–25 (2013)

    Article  ADS  Google Scholar 

  12. T. Kaneyoshi, Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; effects of interlayer coupling at the surface. Phys. A 392, 2406–2414 (2013)

    Article  Google Scholar 

  13. R. Masrour, L. Bahmad, M. Hamedoun, A. Benyoussef, E.K. Hlil, The magnetic properties of a decorated Ising nanotube examined by the use of the Monte Carlo simulations. Solid State Commun. 162, 53–56 (2013)

    Article  ADS  Google Scholar 

  14. O. Canko, F. Taşkın, K. Argin, A. Erdinç, Hysteresis behavior of Blume–Capel model on a cylindrical Ising nanotube. Solid State Commun. 183, 35–40 (2014)

    Article  ADS  Google Scholar 

  15. E. Tirosh, G. Markovich, Control of defects and magnetic properties in colloidal HfO2 nanorods. Adv. Mater. 19, 2608–2612 (2007)

    Article  Google Scholar 

  16. C.P. Gräf, R. Birringer, A. Michels, Synthesis and magnetic properties of cobalt nanocubes. Phys. Rev. B 73, 2124011–2124014 (2006)

    Google Scholar 

  17. E. Vatansever, H. Polat, Phys. A 394, 82–89 (2014)

    Article  Google Scholar 

  18. Y. Yüksel, E. Aydıner, H. Polat, Thermal and magnetic properties of a ferrimagnetic nanoparticle with spin-\(\frac{3}{2}\) core and spin-1 shell structure. J. Magn. Magn. Mater. 323, 3168–3175 (2011)

    Article  Google Scholar 

  19. M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube. Superlattices Microstruct. 80, 151–168 (2015)

    Article  ADS  Google Scholar 

  20. M.A. Garcia, J.M. Merino, P.E. Fernández, A. Quesada, J. de la Venta, M.L. Ruíz González, G.R. Castro, P. Crespo, J. Llopis, J.M. González-Calbet, A. Hernando, Magnetic properties of ZnO nanoparticles. Nano Lett. 7, 1489–1494 (2007)

    Article  ADS  Google Scholar 

  21. Y. Yüksel, E. Vatansever, H. Polat, Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core–shell nanoparticle in the presence of a time dependent magnetic field. J. Phys. Condens. Matter 24, 436004 (2012)

    Article  Google Scholar 

  22. G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl. Phys. Lett. 82, 3053–3055 (2003)

    Article  ADS  Google Scholar 

  23. M.I. Shukoor, F. Natalio, M.N. Tahir, V. Ksenofontov, H.A. Therese, P. Theato, H.C. Schröder, W.E.G. Müller, W. Tremel, Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation. Chem. Commun. 44, 4677–4679 (2007)

    Article  Google Scholar 

  24. J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. 116, 5158–5162 (2004)

    Article  Google Scholar 

  25. X. He, G. Song, J. Zhu, Non-stoichiometric Ni–Zn ferrite by sol–gel processing. J. Mater. Lett. 59, 1941–1944 (2005)

    Article  Google Scholar 

  26. S. Singhal, A.N. Garg, K. Chandra, Evolution of the magnetic properties during the thermal treatment of nanosize BaMFeO (M = Fe, Co, Ni and Al) obtained through aerosol route. J. Magn. Magn. Mater. 285, 193–198 (2005)

    Article  ADS  Google Scholar 

  27. K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Magnetic characterization of Co1−x Ni x Fe2O4 (0 < x < 1) nanoparticles prepared by co-precipitation route. Phys. E 41, 593–599 (2009)

    Article  Google Scholar 

  28. V.S. Leite, W. Figueiredo, Phase diagram of uniaxial antiferromagnetic particles: field perpendicular to the easy axis. Phys. Lett. A 372, 898–903 (2008)

    Article  ADS  MATH  Google Scholar 

  29. M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Magnetic properties of a diluted spin-1/2 Ising nanocube. Phys. A 443, 385–398 (2016)

    Article  MathSciNet  Google Scholar 

  30. D.A. Garanin, H. Kachkachi, Surface contribution to the anisotropy of magnetic nanoparticles. Phys. Rev. Lett. 90, 65504–65507 (2003)

    Article  ADS  Google Scholar 

  31. H. Wang, Y. Zhou, D.L. Lin, C. Wang, Phase diagram of Ising nano-particles with cubic structures. Phys. Status Solidi b 232, 254–263 (2002)

    Article  ADS  Google Scholar 

  32. L. Bahmad, R. Masrour, A. Benyoussef, Nanographene magnetic properties: a Monte Carlo study. J. Supercond. Nov. Magn. 25, 2015–2018 (2012)

    Article  Google Scholar 

  33. B. Deviren, M. Ertaş, M. Keskin, Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire. Phys. Scr. 85, 055001 (2012)

    Article  ADS  MATH  Google Scholar 

  34. E. Kantar, M. Ertaş, M. Keskin, Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field. J. Magn. Magn. Mater. 361, 61–67 (2014)

    Article  ADS  Google Scholar 

  35. M. Ertaş, E. Kantar, Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures. Phase Transit. 88, 567–581 (2015)

    Article  Google Scholar 

  36. E. Kantar, M. Ertaş, Kinetic transverse Ising nanowire system in the presence of a time-varying magnetic field. J. Supercond. Nov. Magn. (2015). doi:10.1007/s10948-015-3351-8

    MATH  Google Scholar 

  37. T. Kaneyoshi, Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube; effects of surface dilution. Solid State Commun. 151, 1528–1532 (2011)

    Article  ADS  Google Scholar 

  38. T. Kaneyoshi, The effects of surface dilution on magnetic properties in a transverse Ising nanowire. Phys. A 391, 3616–3628 (2012)

    Article  Google Scholar 

  39. T. Kaneyoshi, Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: effects of interlayer coupling at the surface. J. Magn. Magn. Mater. 339, 151–156 (2013)

    Article  ADS  Google Scholar 

  40. T. Kaneyoshi, A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration. Phys. E 74, 531–537 (2015)

    Article  Google Scholar 

  41. F.C. Sá Barreto, I.P. Fittipaldy, Thermodynamical properties of the transverse Ising-model. Phys. A 129, 360 (1985)

    Article  Google Scholar 

  42. M. Saber, A simple approximation method for dilute Ising systems. Chin. J. Phys. 35, 577–583 (1997)

    Google Scholar 

  43. A. Saber, A. Ainane, F. Dujardin, M. Saber, B. Steb é, The order parameters of a spin-1 Ising film in a transverse field. J. Phys. Condens. Matter. 11, 2087 (1990)

    Article  ADS  Google Scholar 

  44. T. Kaneyoshi, An antiferromagnetic transverse Ising nanoisland; unconventional surface effects. J. Phys. Chem. Solids 87, 104–109 (2015)

    Article  ADS  Google Scholar 

  45. T. Kaneyoshi, Transverse Ising nano-systems: unconventinal surface effects. J. Phys. Chem. Solids 81, 66–73 (2015)

    Article  ADS  Google Scholar 

  46. T. Kaneyoshi, Unique magnetic properties of an Ising nanowire with a spin glass like disorder at the surface. Phys. B 462, 34–39 (2015)

    Article  ADS  Google Scholar 

  47. L. Néel, Propriétés magnétiques des ferrites. Ferrimagnetisme et antiferromagnetisme. Ann. Phys. (Paris) 3, 137–198 (1948)

    Google Scholar 

  48. J. Strečka, Exact results of a mixed spin-\( \frac{1}{2}\) and spin-S Ising model on a bathroom lite (4–8) lattice: effect of uniaxial single-ion anisotropy. Phys. A 360, 379–390 (2006)

    Article  Google Scholar 

  49. T.K. Hatwar, D.J. Genova, R.H. Victoria, Double compensation point media for direct overwrite. J. Appl. Phys. 75, 6858 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been initiated with the support of URAC: 08, the project RS:02(CNRST) and the Swedish Research Links programme dnr-348-2011-7264 and completed during a visit of A. A. at the Max Planck Institut für Physik Komplexer Systeme Dresden, Germany. The authors would like to thank all the organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ainane.

Appendices

Appendix 1: Equations of the core and surface shell magnetizations

Within the framework of the effective field theory with correlations, the longitudinal magnetizations of the core, namely \(m_{{c}_{1}}^{z},\,m_{{c}_{2}}^{z}\) and \(m_{{c}_{3}}^{z}\), and the longitudinal magnetizations of the surface shell, namely \(m_{{s}_{1}}^{z},\,m_{{s}_{2}}^{z}\) and \(m_{{s}_{3}}^{z} \), can be obtained as:

Magnetization of the central spin \(c_{1}\):

$$\begin{aligned} m_{{c}_{1}}^{z} & = \frac{1}{2^{(3N_{2})}}\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}2^{\mu_{3}}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}} \\ &\quad\times \left( 1-c\right) ^{\mu_{3}}\left( 1-m_{{c}_{1}}^{z}\right) ^{\mu_{1}}\left( 1+m_{{c}_{1}}^{z}\right) ^{N_{2}-\mu_{1}} \\ &\quad\times \left( 1-m_{{c}_{2}}^{z}\right) ^{\mu_{2}}\left( 1+m_{{c}_{2}}^{z}\right) ^{N_{2}-\mu_{2}}\left( c-m_{{s}_{2}}^{z}\right) ^{\nu_{3}} \\ &\quad\times \left( c+m_{{s}_{2}}^{z}\right) ^{N_{2}-\mu_{3}-\nu_{3}}f_{z}(J_{\rm c}(2N_{2}-2(\mu_{1}+\mu_{2})) \\ &\quad+J_{\rm cs}(N_{2}-(\mu_{3}+2\nu_{3})),\Omega_{\rm c}) \end{aligned}$$
(21)

Magnetization of the central spin \(c_{2}\):

$$\begin{aligned} m_{{c}_{2}}^{z}&= \frac{1}{2^{(2N_{1}+2N_{2})}}\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}2^{\mu_{4}}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{1}} \\& \quad\times C_{\mu_{4}}^{N_{1}}C_{\nu_{4}}^{N_{1}-\mu_{4}}\left( 1-c\right) ^{\mu_{4}}\left( 1-m_{{c}_{1}}^{z}\right) ^{\mu_{1}}\left( 1+m_{{c}_{1}}^{z}\right) ^{N_{2}-\mu_{1}} \\ &\quad\times \left( 1-m_{{c}_{2}}^{z}\right) ^{\mu_{2}}\left( 1+m_{{c}_{2}}^{z}\right) ^{N_{2}-\mu_{2}}\left( 1-m_{{c}_{3}}^{z}\right) ^{\mu_{3}} \\ &\quad\times \left( 1+m_{{c}_{3}}^{z}\right) ^{N_{1}-\mu_{3}}\left( c-m_{{s}_{3}}^{z}\right) ^{\nu_{4}}\left( c+m_{{s}_{3}}^{z}\right) ^{N_{1}-\mu_{4}-\nu_{4}} \\ &\quad\times f_{z}(J_{\rm c}(N_{1}+2N_{2}-2(\mu_{1}+\mu_{2}+\mu_{3})) \\ &\quad+J_{\rm cs}(N_{1}-(\mu_{4}+2\nu_{4})),\Omega_{\rm c}) \end{aligned}$$
(22)

Magnetization of the central spin \(c_{3}\):

$$\begin{aligned} m_{{c}_{3}}^{z}&= \frac{1}{2^{(N_{2}+N_{4})}}\mathop {\sum }\limits_{\mu_{1}=0}^{N_{4}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}C_{\mu_{1}}^{N_{4}}C_{\mu_{2}}^{N_{1}}\left( 1-m_{{c}_{2}}^{z}\right) ^{\mu_{1}}\left( 1+m_{{c}_{2}}^{z}\right) ^{N_{4}-\mu_{1}} \\ &\quad\times \left( 1-m_{{c}_{3}}^{z}\right) ^{\mu_{2}}\left( 1+m_{{c}_{3}}^{z}\right) ^{N_{2}-\mu_{2}}f_{z}(J_{\rm c}(N_{2}+N_{4} \\ &\quad-2(\mu_{1}+\mu_{2})),\Omega_{\rm c}) \end{aligned}$$
(23)

Magnetization of the central spin \(s_{1}\):

$$\begin{aligned} m_{{s}_{1}}^{z}&= c\times \frac{1}{2^{2N_{2}}}\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{1}=0}^{N_{2}-\mu_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}2^{\mu_{1}+\mu_{2}}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\nu_{1}}^{N_{2}-\mu_{1}} \\ &\quad\times C_{\nu_{2}}^{N_{2}-\mu_{2}}\left( 1-c\right) ^{\mu_{1}+\mu_{2}}\left( c-m_{{s}_{1}}^{z}\right) ^{\nu_{1}}\left( c+m_{{s}_{1}}^{z}\right) ^{N_{2}-\mu_{1}-\nu_{1}} \\ &\quad\times \left( c-m_{{s}_{2}}^{z}\right) ^{\nu_{2}}\left( c+m_{{s}_{2}}^{z}\right) ^{N_{2}-\mu_{2}-\nu_{2}} \\ &\quad\times f_{z}(J_{\rm s}(2N_{2}-(\mu_{1}+\mu_{2}+2(\nu_{1}+\nu_{2}))),\Omega_{\rm s}) \end{aligned}$$
(24)

Magnetization of the surface spin \(s_{2}\):

$$\begin{aligned} m_{{s}_{2}}^{z}&= c\times \frac{1}{2^{3N_{1}+N_{2}}}\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{1}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}2^{\mu_{2}+\mu_{3}+\mu_{4}} \\ &\quad\times C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}C_{\mu_{4}}^{N_{1}}C_{\nu_{2}}^{N_{1}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{\nu_{4}}^{N_{1}-\mu_{4}}\left( 1-c\right) ^{\mu_{2}+\mu_{3}+\mu_{4}} \\ &\quad\times \left( 1-m_{{c}_{1}}^{z}\right) ^{\mu_{1}}\left( 1+m_{{c}_{1}}^{z}\right) ^{N_{1}-\mu_{1}}\left( c-m_{{s}_{1}}^{z}\right) ^{\nu_{2}} \\ &\quad\times \left( c+m_{{s}_{1}}^{z}\right) ^{N_{1}-\mu_{2}-\nu_{2}}\left( c-m_{{s}_{2}}^{z}\right) ^{\nu_{3}}\left( c+m_{{s}_{2}}^{z}\right) ^{N_{2}-\mu_{3}-\nu_{3}} \\ &\quad\times \left( c-m_{{s}_{3}}^{z}\right) ^{\nu_{4}}\left( c+m_{{s}_{3}}^{z}\right) ^{N_{1}-\mu_{4}-\nu_{4}}f_{z}(J_{\rm s}(2N_{1}+N_{2} \\ &\quad-(\mu_{2}+\mu_{3}+\mu_{4}+2(\nu_{2}+\nu_{3}+\nu_{4})))+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm s}) \end{aligned}$$
(25)

Magnetization of the surface spin \(s_{3}\):

$$\begin{aligned} m_{{s}_{3}}^{z}&=c\times \frac{1}{2^{(N_{1}+2N_{2})}}\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}2^{(\mu_{2}+\mu_{3})}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{2}} \\ &\quad\times C_{\mu_{3}}^{N_{2}}C_{\nu_{2}}^{N_{2}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}\left( 1-c\right) ^{\mu_{2}+\mu_{3}}\left( 1-m_{{c}_{2}}^{z}\right) ^{\mu_{1}} \\ &\quad\times \left( 1+m_{{c}_{2}}^{z}\right) ^{N_{1}-\mu_{1}}\left( c-m_{{s}_{2}}^{z}\right) ^{\nu_{2}}\left( c+m_{{s}_{2}}^{z}\right) ^{N_{2}-\mu_{2}-\nu_{2}} \\ &\quad\times \left( c-m_{{s}_{3}}^{z}\right) ^{\nu_{3}}\left( c+m_{{s}_{3}}^{z}\right) ^{N_{2}-\mu_{3}-\nu_{3}}f_{z}(J_{\rm s}(2N_{2} \\ &\quad-(\mu_{2}+\mu_{3}+2(\nu_{2}+\nu_{3})))+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm s}) \end{aligned}$$
(26)

Appendix 2

The coefficients A(i,j) of the matrix M are given by

$$\begin{aligned} A(1,1)&= 2^{-\left( 3N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{i=0}^{\mu_{1}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{1}}2^{(\mu_{3})}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}} \\ &\quad\times C_{i}^{\mu_{1}}C_{j}^{N_{2}-\mu_{1}}(1-c)^{\mu_{3}}c^{N_{2}-\mu_{3}}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad f_{z}(J_{\rm c}(2N_{2}-2(\mu_{1}+\mu_{2}))+J_{\rm cs}\left( N_{2}-(\mu_{3}+2\nu_{3}\right) ),\Omega_{\rm c}) \end{aligned}$$
(27)
$$\begin{aligned} A(1,2)&= 2^{-\left( 3N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{i=0}^{\mu_{2}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{2}}2^{(\mu_{3})}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}} \\ &\quad\times C_{i}^{\mu_{2}}C_{j}^{N_{2}-\mu_{2}}(1-c)^{\mu_{3}}c^{N_{2}-\mu_{3}}\left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm c}(2N_{2} \\ &\quad-2(\mu_{1}+\mu_{2}))+J_{\rm cs}\left( N_{2}-(\mu_{3}+2\nu_{3}\right) ),\Omega_{\rm c}) \end{aligned}$$
(28)
$$\begin{aligned} A(1,5)&= 2^{-\left( 3N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{i=0}^{\nu_{3}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{3}-\nu_{3}}2^{(\mu_{3})}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}} \\ &\quad\times C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{i}^{\nu_{3}}C_{j}^{N_{2}-\mu_{3}-\nu_{3}}(1-c)^{\mu_{3}}c^{N_{2}-\mu_{3}-i-j}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad\times f_{z}(J_{\rm c}(2N_{2}-2(\mu_{1}+\mu_{2}))+J_{\rm cs}\left( N_{2}-(\mu_{3}+2\nu_{3}\right) ),\Omega_{\rm c}) \end{aligned}$$
(29)
$$\begin{aligned} A(2,1)&= 2^{-\left( 2N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\mu_{1}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{1}}2^{(\mu_{4})}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}} \\ &\quad\times C_{\mu_{3}}^{N_{1}}C_{\mu_{4}}^{N_{1}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\mu_{1}}C_{j}^{N_{2}-\mu_{1}}(1-c)^{\mu_{4}}c^{N_{1}-\mu_{4}}\left( -1\right) ^{i} \\ &\quad\times \delta_{i+j,1}f_{z}(J_{\rm c}(N_{1}+2N_{2}-2\left( \mu_{1}+\mu_{2}+\mu_{3}\right) ) \\ &\quad+J_{\rm cs}\left( N_{1}-(\mu_{4}+2\nu_{4})\right) , \Omega_{\rm c}) \end{aligned}$$
(30)
$$\begin{aligned} A(2,2)&= 2^{-\left( 2N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\mu_{2}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{2}}2^{(\mu_{4})}C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}} \\ &\quad\times C_{\mu_{3}}^{N_{1}}C_{\mu_{4}}^{N_{1}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\mu_{2}}C_{j}^{N_{2}-\mu_{2}}(1-c)^{\mu_{4}}c^{N_{1}-\mu_{4}}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad\times f_{z}(J_{\rm c}(N_{1}+2N_{2}-2\left( \mu_{1}+\mu_{2}+\mu_{3}\right) ) \\ &\quad+J_{\rm cs}\left( N_{1}-(\mu_{4}+2\nu_{4})\right) , \Omega_{\rm c}) \end{aligned}$$
(31)
$$\begin{aligned} A(2,3)&= 2^{-\left( 2N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\mu_{3}}\mathop {\sum }\limits_{j=0}^{N_{1}-\mu_{3}}2^{(\mu_{4})}C_{\mu_{1}}^{N_{2}} \\ &\quad\times C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{1}}C_{\mu_{4}}^{N_{1}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\mu_{3}}C_{j}^{N_{1}-\mu_{3}}(1-c)^{\mu_{4}}c^{N_{1}-\mu_{4}} \\ &\quad\times \left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm c}(N_{1}+2N_{2}-2\left( \mu_{1}+\mu_{2}+\mu_{3}\right) ) \\ &\quad+J_{\rm cs}\left( N_{1}-(\mu_{4}+2\nu_{4})\right) , \Omega_{\rm c}) \end{aligned}$$
(32)
$$\begin{aligned} A(2,6)&= 2^{-\left( 2N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\nu_{4}}\mathop {\sum }\limits_{j=0}^{N_{1}-\mu_{4}-\nu_{4}}2^{(\mu_{4})}C_{\mu_{1}}^{N_{2}} \\ &\quad\times C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{1}}C_{\mu_{4}}^{N_{1}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\nu_{4}}C_{j}^{N_{1}-\mu_{4}-\nu_{4}}(1-c)^{\mu_{4}}c^{N_{1}-\mu_{4}-i-j} \\ &\quad\times \left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm c}(N_{1}+2N_{2}-2\left( \mu_{1}+\mu_{2}+\mu_{3}\right) ) \\ &\quad+J_{\rm cs}\left( N_{1}-(\mu_{4}+2\nu_{4})\right) , \Omega_{\rm c}) \end{aligned}$$
(33)
$$\begin{aligned} A(3,2)&= 2^{-\left( N_{2}+N_{4}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{4}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{i=0}^{\mu_{1}}\mathop {\sum }\limits_{j=0}^{N_{4}-\mu_{1}}C_{\mu_{1}}^{N_{4}}C_{\mu_{2}}^{N_{2}}C_{i}^{\mu_{1}}C_{j}^{N_{4}-\mu_{1}} \\ &\quad\times \left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm c}(N_{2}+N_{4}-2\left( \mu_{1}+\mu_{2}\right) ),\Omega_{\rm c}) \end{aligned}$$
(34)
$$\begin{aligned} A(3,3)&= 2^{-\left( N_{2}+N_{4}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{4}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{i=0}^{\mu_{2}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{2}}C_{\mu_{1}}^{N_{4}}C_{\mu_{2}}^{N_{2}}C_{i}^{\mu_{2}}C_{j}^{N_{2}-\mu_{2}} \\ &\quad\times \left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm c}(N_{2}+N_{4}-2\left( \mu_{1}+\mu_{2}\right) ),\Omega_{\rm c}) \end{aligned}$$
(35)
$$\begin{aligned} A(4,4)&= 2^{-\left( 2N_{2}\right) }\times c\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{1}=0}^{N_{2}-\mu_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}\mathop {\sum }\limits_{i=0}^{\nu_{1}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{1}-\nu_{1}}2^{(\mu_{1}+\mu_{2})} \\ &\quad\times C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\nu_{1}}^{N_{2}-\mu_{1}}C_{\nu_{2}}^{N_{2}-\mu_{2}}C_{i}^{\nu_{1}}C_{j}^{N_{2}-\mu_{1}-\nu_{1}}(1-c)^{\mu_{1}+\mu_{2}} \\ &\quad\times c^{2N_{2}-\mu_{1}-\mu_{2}-i-j}\left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm s}(2N_{2} \\ &\quad-\left( \mu_{1}+\mu_{2}+2(\nu_{1}+\nu_{2})\right) ),\Omega_{\rm c}) \end{aligned}$$
(36)
$$\begin{aligned} A(4,5)&= 2^{-\left( 2N_{2}\right) }\times c\mathop {\sum }\limits_{\mu_{1}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{1}=0}^{N_{2}-\mu_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}\mathop {\sum }\limits_{i=0}^{\nu_{2}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{2}-\nu_{2}}2^{(\mu_{1}+\mu_{2})} \\ &\quad\times C_{\mu_{1}}^{N_{2}}C_{\mu_{2}}^{N_{2}}C_{\nu_{1}}^{N_{2}-\mu_{1}}C_{\nu_{2}}^{N_{2}-\mu_{2}}C_{i}^{\nu_{2}}C_{j}^{N_{2}-\mu_{2}-\nu_{2}}(1-c)^{\mu_{1}+\mu_{2}} \\ &\quad\times c^{2N_{2}-\mu_{1}-\mu_{2}-i-j}\left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm s}(2N_{2} \\ &\quad-\left( \mu_{1}+\mu_{2}+2(\nu_{1}+\nu_{2})\right) ),\Omega_{\rm c}) \end{aligned}$$
(37)
$$\begin{aligned} A(5,1)&= 2^{-\left( 3N_{1}+N_{2}\right) }\times c\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{1}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\mu_{1}}\mathop {\sum }\limits_{j=0}^{N_{1}-\mu_{1}} \\ &\quad\times 2^{(\mu_{2}+\mu_{3}+\mu_{4})}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}C_{\mu_{4}}^{N_{1}}C_{\nu_{2}}^{N_{1}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\mu_{1}} \\ &\quad\times C_{j}^{N_{1}-\mu_{1}}(1-c)^{\mu_{2}+\mu_{3}+\mu_{4}}c^{2N_{1}+N_{2}-\mu_{2}-\mu_{3}-\mu_{4}}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad\times f_{z}(J_{\rm s}(2N_{1}+N_{2}-(\mu_{2}+\mu_{3}+\mu_{4} \\ &\quad+2(\nu_{2}+\nu_{3}+\nu_{4})))+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm c}) \end{aligned}$$
(38)
$$\begin{aligned} A(5,4) &= 2^{-\left( 3N_{1}+N_{2}\right) }\times c\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{1}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\nu_{2}}\mathop {\sum }\limits_{j=0}^{N_{1}-\mu_{2}-\nu_{2}} \\ &\quad\times 2^{(\mu_{2}+\mu_{3}+\mu_{4})}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}C_{\mu_{4}}^{N_{1}}C_{\nu_{2}}^{N_{1}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\nu_{2}} \\ &\quad\times C_{j}^{N_{1}-\mu_{2}-\nu_{2}}(1-c)^{\mu_{2}+\mu_{3}+\mu_{4}}c^{2N_{1}+N_{2}-\mu_{2}-\mu_{3}-\mu_{4}-i-j}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad\times f_{z}(J_{\rm s}(2N_{1}+N_{2}-(\mu_{2}+\mu_{3}+\mu_{4}+2(\nu_{2}+\nu_{3}+\nu_{4}))) \\ &\quad+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm c}) \end{aligned}$$
(39)
$$\begin{aligned} A(5,5)&= 2^{-\left( 3N_{1}+N_{2}\right) }\times c\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{1}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\nu_{3}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{3}-\nu_{3}} \\ &\quad\times 2^{(\mu_{2}+\mu_{3}+\mu_{4})}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}C_{\mu_{4}}^{N_{1}}C_{\nu_{2}}^{N_{1}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\nu_{3}} \\ &\quad\times C_{j}^{N_{2}-\mu_{3}-\nu_{3}}(1-c)^{\mu_{2}+\mu_{3}+\mu_{4}}c^{2N_{1}+N_{2}-\mu_{2}-\mu_{3}-\mu_{4}-i-j}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad\times f_{z}(J_{\rm s}(2N_{1}+N_{2}-(\mu_{2}+\mu_{3}+\mu_{4}+2(\nu_{2}+\nu_{3}+\nu_{4}))) \\ &\quad+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm c}) \end{aligned}$$
(40)
$$\begin{aligned} A(5,6)&= 2^{-\left( 3N_{1}+N_{2}\right) }\times c\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{4}=0}^{N_{1}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{1}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{\nu_{4}=0}^{N_{1}-\mu_{4}}\mathop {\sum }\limits_{i=0}^{\nu_{4}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{4}-\nu_{4}} \\ &\quad\times 2^{(\mu_{2}+\mu_{3}+\mu_{4})}C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{1}}C_{\mu_{3}}^{N_{2}}C_{\mu_{4}}^{N_{1}}C_{\nu_{2}}^{N_{1}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{\nu_{4}}^{N_{1}-\mu_{4}}C_{i}^{\nu_{4}} \\ &\quad\times C_{j}^{N_{2}-\mu_{4}-\nu_{4}}(1-c)^{\mu_{2}+\mu_{3}+\mu_{4}}c^{2N_{1}+N_{2}-\mu_{2}-\mu_{3}-\mu_{4}-i-j}\left( -1\right) ^{i}\delta_{i+j,1} \\ &\quad\times f_{z}(J_{\rm s}(2N_{1}+N_{2}-(\mu_{2}+\mu_{3}+\mu_{4}+2(\nu_{2}+\nu_{3}+\nu_{4}))) \\ &\quad+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm c}) \end{aligned}$$
(41)
$$\begin{aligned} A(6,2)&= 2^{-\left( N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{i=0}^{\mu_{1}}\mathop {\sum }\limits_{j=0}^{N_{1}-\mu_{1}}2^{(\mu_{2}+\mu_{3})}C_{\mu_{1}}^{N_{1}} \\ &\quad\times C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}C_{\nu_{2}}^{N_{2}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{i}^{\mu_{1}}C_{j}^{N_{1}-\mu_{1}}(1-c)^{\mu_{2}+\mu_{3}}c^{2N_{2}-\mu_{2}-\mu_{3}} \\ &\quad\times \left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm s}(2N_{2}-(\mu_{2}+\mu_{3}+2(\nu_{2}+\nu_{3}))) \\ &\quad+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm s}) \end{aligned}$$
(42)
$$\begin{aligned} A(6,5)&= 2^{-\left( N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{i=0}^{\nu_{2}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{2}-\nu_{2}}2^{(\mu_{2}+\mu_{3})} \\ &\quad\times C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}C_{\nu_{2}}^{N_{2}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{i}^{\nu_{2}}C_{j}^{N_{2}-\mu_{2}-\nu_{2}}(1-c)^{\mu_{2}+\mu_{3}} \\ &\quad\times c^{2N_{2}-\mu_{2}-\mu_{3}-i-j}\left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm s}(2N_{2} \\ &\quad-(\mu_{2}+\mu_{3}+2(\nu_{2}+\nu_{3})))+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm s}) \end{aligned}$$
(43)
$$\begin{aligned} A(6,6)&= 2^{-\left( N_{1}+2N_{2}\right) }\mathop {\sum }\limits_{\mu_{1}=0}^{N_{1}}\mathop {\sum }\limits_{\mu_{2}=0}^{N_{2}}\mathop {\sum }\limits_{\mu_{3}=0}^{N_{2}}\mathop {\sum }\limits_{\nu_{2}=0}^{N_{2}-\mu_{2}}\mathop {\sum }\limits_{\nu_{3}=0}^{N_{2}-\mu_{3}}\mathop {\sum }\limits_{i=0}^{\nu_{3}}\mathop {\sum }\limits_{j=0}^{N_{2}-\mu_{3}-\nu_{3}}2^{(\mu_{2}+\mu_{3})} \\ &\quad\times C_{\mu_{1}}^{N_{1}}C_{\mu_{2}}^{N_{2}}C_{\mu_{3}}^{N_{2}}C_{\nu_{2}}^{N_{2}-\mu_{2}}C_{\nu_{3}}^{N_{2}-\mu_{3}}C_{i}^{\nu_{3}}C_{j}^{N_{2}-\mu_{3}-\nu_{3}}(1-c)^{\mu_{2}+\mu_{3}} \\ &\quad\times c^{2N_{2}-\mu_{2}-\mu_{3}-i-j}\left( -1\right) ^{i}\delta_{i+j,1}f_{z}(J_{\rm s}(2N_{2} \\ &\quad-(\mu_{2}+\mu_{3}+2(\nu_{2}+\nu_{3})))+J_{\rm cs}(N_{1}-2\mu_{1}),\Omega_{\rm s}) \end{aligned}$$
(44)

where \(N_{1}=1,\,N_{2}=2,\,N_{3}=3,\,N_{4}=4\) and \(N_{6}=6\) denote, respectively, the coordination number, and \(C_{k}^{l}\) are the binomial coefficients \(C_{k}^{l}=\frac{l!}{k!(l-k)!}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hamri, M., Bouhou, S., Essaoudi, I. et al. Phase diagrams of a transverse cubic nanowire with diluted surface shell. Appl. Phys. A 122, 202 (2016). https://doi.org/10.1007/s00339-016-9680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9680-z

Keywords

Navigation