Skip to main content
Log in

SiC absorption of near-infrared laser radiation at high temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on a theoretical and experimental investigation of the temperature-dependent optical absorption of nitrogen-doped 4H-SiC for a temperature range between room temperature and the decomposition point. The theoretical model is based on free carrier absorption including the temperature dependence of the electron mobility. With respect to laser material processing of silicon carbide, the analysis focusses on a near-infrared wavelength range. At room temperature, the calculated absorption is in excellent agreement to transmission and reflection measurements. For the experimental study of the absorption at higher temperatures induced by intense 1070-nm laser irradiation, a two-color pyrometer is employed with the thermal emission of the laser interaction zone being collected coaxial to the impinging laser. Exemplarily, the simulated temperature-dependent absorption is used to determine the heating of a 0.4-mm-thick 4H-SiC specimen during laser irradiation and compared to the experimentally determined temperature. In an initial time domain of the irradiation with an attained temperature below 1350 K, the simulated and measured temperatures are in good agreement. Above 1350 K, however, the measured temperature reveals a sharp and fast increase up to 2100 K which is not predicted by the model. This discrepancy is attributed to a strong additional absorption mechanism caused by carbonization at the surface which is confirmed by EDX analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Mnatsakanov, L. Pomortseva, S. Yurkov, Semiempirical model of carrier mobility in silicon carbide for analyzing its dependence on temperature and doping level. Phys. Astron. 35(4), 394–397 (2001)

    Google Scholar 

  2. M. Ostling, High power devices in wide bandgap semiconductors. Sci. China Inf. Sci. 5, 1087–1093 (2011)

    Article  Google Scholar 

  3. C.A. Zormann, M. Mehregany, in Micromachining of SiC. Silicon Carbide, ed. by W.J. Choyke, H. Matsunami, G. Pensl (Springer, Berlin, 2004), pp. 671–698

  4. D. Zhuang, J.J. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. 48(1), 1–46 (2005)

    Article  Google Scholar 

  5. H. Cho, P. Leerungnawarat, D.C. Hays, S. Pearton, S. Chu, R. Strong, C. Zetterling, M. Ostling, F. Ren, Ultradeep, low-damage dry etching of SiC. Appl. Phys. Lett. 76(6), 739–741 (2000)

    Article  ADS  Google Scholar 

  6. L. Jiang, R. Cheung, M. Hassan, A. Harris, J. Burdess, C. Zorman, M. Mehregany, Fabrication of SiC microelectromechanical systems using one-step dry etching. J. Vac. Sci. Technol. B 21(6), 2998–3001 (2003)

    Article  Google Scholar 

  7. J. Sugiura, W. Lu, K. Cadien, A. Steckl, Reactive ion etching of SiC thin films using fluorinated gases. J. Vac. Sci. Technol. B 4(1), 349–354 (1986)

    Article  Google Scholar 

  8. L. Jiang, N. Plank, M. Blauw, R. Cheung, E. Drift, Dry etching of SiC in inductively coupled Cl2/Ar plasma. J. Phys. D Appl. Phys. 37(13), 1809 (2004)

    Article  ADS  Google Scholar 

  9. F. Khan, I. Adesida, High rate etching of SiC using inductively coupled plasma reactive ion etching in SF 6-based gas mixtures. Appl. Phys. Lett. 75(15), 2268–2270 (1999)

    Article  ADS  Google Scholar 

  10. R. Reitano, P. Baeri, N. Marino, Excimer laser induced thermal evaporation and ablation of silicon carbide. Appl. Surf. Sci. 96, 302–308 (1996)

    Article  ADS  Google Scholar 

  11. S. Gupta, B. Pecholt, P. Molian, Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers. J. Mater. Sci. 46, 196–206 (2011)

    Article  ADS  Google Scholar 

  12. O. Krueger, R. Grundmueller, UV laser processing for semiconductor devices. Laser Tech. J. 10, 26–30 (2013)

    Article  Google Scholar 

  13. O. Krueger, G. Schoene, T. Wernicke, W. John, J. Wurfl, G. Traenkle, UV laser drilling of SiC for semiconductor device fabrication. J. Phys. 59, 740–744 (2007)

    Google Scholar 

  14. K. Nakashima, O. Eryu, S. Ukai, K. Yoshida, M. Watanabe, Improved ohmic contacts to 6H-SiC by pulsed laser processing. Mater. Sci. Forum 338(342), 1005–1008 (2000)

    Article  Google Scholar 

  15. P. Molian, B. Pecholt, S. Gupta, Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers. Appl. Surf. Sci. 255, 4515–4520 (2009)

    Article  ADS  Google Scholar 

  16. M. Farsari, G. Filippidis, S. Zoppel, G. Reider, C. Fotakis, Efficient femtosecond lasesr micromachining of bulk 3C-SiC. J. Micromech. Microeng. 15, 1786–1789 (2005)

    Article  ADS  Google Scholar 

  17. M. Farsari, G. Filippidis, S. Zoppel, G. Reider, C. Fotakis, Micromachining of silicon carbide using femtosecond lasers. J. Phys Conf. Ser. 59, 84–87 (2007)

    Article  ADS  Google Scholar 

  18. B. Adelmann, A. Hürner, G.L. Roth, R. Hellmann, Back side ablation of SiC diodes using a q-switched NIR Laser. J. Laser Micro/Nanoeng. 10(2), 190–194 (2015)

    Article  Google Scholar 

  19. G.-L. Roth, B. Adelmann, R. Hellmann, Cutting and drilling of sic semiconductor by fiber laser. J. Laser Micro/Nanoeng. 10(3), 279–283 (2015)

    Article  Google Scholar 

  20. Y. Ota, Y. Ikeda, M. Kitabatake, Laser alloying for ohmic contacts on SiC at room temperature. Mater. Sci. Forum 264(268), 783–786 (1998)

    Article  Google Scholar 

  21. B. Adelmann, A. Hürner, T. Schlegel, A.J. Bauer, L. Frey, R. Hellmann, Laser alloying nickel on 4H-Silicon carbide substrate to generate ohmic contacts. J. Laser Micro/Nanoeng. 8(1), 97–101 (2013)

    Article  Google Scholar 

  22. A. Hürner, T. Schlegel, B. Adelmann, H. Mitlehner, R. Hellmann, A. Bauer, L. Frey, Alloying of ohmic contacts to n-type 4H-SiC via laser irradiation. Mater. Sci. Forum 740(742), 773–776 (2013)

    Article  Google Scholar 

  23. D.H. Duc, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide. Int. J. Heat Mass Transf. 65, 713–718 (2013)

    Article  Google Scholar 

  24. Z.C. Feng, SiC Power Materials (Springer, Berlin, 2004)

    Book  Google Scholar 

  25. N. Astrath, A. Bento, M. Baesso, A. Ferreira da Silva, C. Persson, Photoacoustic spectroscopy to determine the optical properties of thin film 4H-SiC. Thin Solid Films 515(5), 2821–2823 (2006)

    Article  ADS  Google Scholar 

  26. C.-Y. Tsai, C.-Y. Tsai, C.-H. Chen, T.-L. Sung, T.-Y. Wu, F.-P. Shih, Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model. IEEE J. Quantum Electron. 34(3), 552–559 (1998)

    Article  ADS  Google Scholar 

  27. N.T. Son, W.M. Chen, O. Kordina, A.O. Konstantinov, B. Monemar, E. Janzeln, D.M. Hofman, D. Volm, M. Drechsler, B.K. Meyer, Electron effective masses in 4H SiC. Appl. Phys. Lett. 66(9), 1074–1076 (1995)

    Article  ADS  Google Scholar 

  28. N.T. Son, O. Kordina, A.O. Konstantinov, W.M. Chen, E. Solrman, B. Monemar, E. JanzeÌn, Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers. Appl. Phys. Lett. 65(25), 3209–3211 (1994)

    Article  ADS  Google Scholar 

  29. P.T.B. Shaffer, Refractive index, dispersion, and birefringence of silicon carbide polytypes. Appl. Opt. 10(5), 1034–1036 (1971)

    Article  ADS  Google Scholar 

  30. J.A. Powell, Refractive index and birefringence of 2H SILICON CARBIDE. J. Opt. Soc. Am. 62(3), 341–344 (1972)

    Article  ADS  Google Scholar 

  31. D. Caughey, R. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)

    Article  Google Scholar 

  32. W.J. Schaffer, G.H. Negley, K.G. Irvine, J.W. Palmour, in Conductivity Anisotropy in Epitaxial 6H and 4H SiC, Symposium D—Diamond, Silicon Carbide and Nitride Wide Bandgap Semiconductors. MRS Proceedings, vol. 339 (1994), p. 595. doi:10.1557/PROC-339-595. http://journals.cambridge.org/article_S1946427400408419

  33. M. Roschke, F. Schwierz, Electron mobility models for 4H, 6H, and 3C SiC MESFETs. IEEE Trans. Electron Dev. 7(48), 1442–1447 (2001)

    Article  ADS  Google Scholar 

  34. K. Sasaki, E. Sakuma, S. Misawa, S. Yoshida, S. Gonda, High-temperature electrical properties of 3C-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 1(45), 72–73 (1984)

    Article  ADS  Google Scholar 

  35. F. Thuselt, Physik of Semiconductors (Springer, New York, 2005). (in German)

    Google Scholar 

  36. M. Ruff, H. Mitlehner, R. Helbig, SiC devices: physics and numerical simulation. IEEE Trans. Electron Dev. 6(41), 1040–1054 (1994)

    Article  ADS  Google Scholar 

  37. W. Götz, A. Schöner, G. Pensl, W. Suttrop, W.J. Choyke, R. Stein, S. Leibenzeder, Nitrogen donors in 4H-silicon carbide. J. Appl. Phys. 7(73), 3332–3338 (1993)

    Article  Google Scholar 

  38. M.A. Capano, J.A. Cooper, M.R. Melloch, A. Saxler, W.C. Mitchel, Ionization energies and electron mobilities in phosphorus- and nitrogen-implanted 4H-silicon carbide. J. Appl. Phys. 12(87), 8773–8777 (2000)

    Article  ADS  Google Scholar 

  39. H. Matsuura, T. Kimoto, H. Matsunami, Nitrogen donor concentrations and its energy levels in 4H-SiC uniquely determined by a new graphical method based on Hall-effect measurement. Jpn. J. Appl. Phys. 38(7R), 4013 (1999)

    Article  ADS  Google Scholar 

  40. C. Kittel, in Introduction to Solid State Physics, ed. by H.J. Coufal (Oldenbourg, Munich, 1999)

  41. Y. Goldberg, M. Levinshtein, S. Rumyantsev, in Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, ed. by M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, Hoboken, 2001)

  42. R. Weingärtner, P.J. Wellmann, M. Bickermann, D. Hofmann, T.L. Straubinger, A. Winnacker, Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements. Appl. Phys. Lett. 1(80), 70–72 (2002)

    Article  ADS  Google Scholar 

  43. P. Wellmann, R. Weingärtner, M. Bickermann, T. Straubinger, A. Winnacker, Optical quantitative determination of doping levels and their distribution in SiC. Mater. Sci. Eng. B 91(92), 75–78 (2002)

    Article  Google Scholar 

  44. A.H. Gomes de Mesquita, Refinement of the crystal structure of SiC type 6H. Acta Cryst. 23(4), 610–617 (1967)

    Article  Google Scholar 

  45. O. Nilsson, H. Mehling, R. Horn, J. Fricke, R. Hofmann, S. Muller, R. Eckstein, D. Hofmann, Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide. High Temp. High Press. 29, 73–79 (1997)

    Article  Google Scholar 

  46. W. Janke, A. Hapka, Nonlinear thermal characteristics of silicon carbide devices. Mater. Sci. Eng. B 176(4), 289–292 (2011)

    Article  Google Scholar 

  47. J.A. Costello, R.E. Tressler, Oxidation Kinetics of Hot-Pressed and Sintered alpha-SiC. J. Am. Ceram. Soc. 64(6), 327–331 (1981)

    Article  Google Scholar 

  48. R.C. Robinson, J.L. Smialek, SiC recession caused by SiO2 scale volatility under combustion conditions: I, experimental results and empirical model. J. Am. Ceram. Soc. 82(7), 1817–1825 (1999)

    Article  Google Scholar 

  49. R.E. Nightingale, E.M. Woodruff, Radiation-induced dimensional charges in large graphite bars. Nucl. Sci. Eng. 19(4), 390–392 (1964)

    Google Scholar 

  50. W. Pachla, A. Morawski, P. Kovac, I. Husek, A. Mazur, T. Lada, R. Diduszko, T. Melisek, V. Strbik, M. Kulczyk, Properties of hydrostatically extruded in situ MgB2 wires doped with SiC. Supercond. Sci. Technol. 19(1), 1 (2006)

    Article  ADS  Google Scholar 

  51. Q.N. Nguyen, E.J. Opila, R.C. Robinson, Oxidation of ultrahigh temperature ceramics in water vapor. J. Electrochem. Soc. 151(10), B558–B562 (2004)

    Article  Google Scholar 

  52. R.I. Scace, G.A. Slack, Solubility of carbon in silicon and germanium. J. Chem. Phys. 30(6), 1551–1555 (1959)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Adelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelmann, B., Hellmann, R. SiC absorption of near-infrared laser radiation at high temperatures. Appl. Phys. A 122, 642 (2016). https://doi.org/10.1007/s00339-016-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0173-x

Keywords

Navigation