Skip to main content
Log in

Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The cleaning of painted artworks, i.e. the critical operation whereby materials are selectively removed from a painted surface by partial thinning or complete elimination of varnish, is one of the most debated conservation operations, being an irreversible process, which may result in chromatic and morphological variations in the painted surface. Due to ageing, the upper layer is subject to darkening and yellowing because of blanching and fading from ultraviolet exposure, dust deposition, and overpainted layers due, for instance, to restoration interventions. This degradation can either alter the original appearance of painting polychromy or cause mechanical failure of the finishes. To address these adverse conditions, a process of examination and analysis is critical to the definition and interpretation of the varnish layer. When investigating the ageing process of old paintings, it is of great importance to obtain insight into the painting technique as practiced in the past, and the first step in gaining this knowledge is, to a large extent, based on the study of the varnish film. An effective control of the process and objective evaluation of its outcome requires therefore instrumental/analytical support. The present study illustrates the successful application of non-invasive optical techniques—such as colorimetry, multispectral reflectography, laser scanning micro-profilometry, and optical coherence tomography—to the monitoring of an Italian fourteenth-century painting cleaning process. Results presented here confirm that optical techniques play a pivotal role in artwork diagnostics, especially with regard to conservation operations, while also indicating their validity when applied to the monitoring of the cleaning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.R.J. Van Asperen de Boer, Infrared reflectography: a method for the examination of paintings. Appl. Opt. 7(9), 1711–1714 (1968)

    Article  ADS  Google Scholar 

  2. D. Bertani, M. Cetica, P. Poggi, G. Puccioni, E. Buzzegoli, D. Kunzelman, S. Cecchi, A scanning device for infrared reflectography. Stud. Conserv. 35, 113–119 (1990)

    Article  Google Scholar 

  3. S. Baronti, A. Casini, F. Lotti, S. Porcinai, Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis. Appl. Opt. 37(8), 1299–1309 (1998)

    Article  ADS  Google Scholar 

  4. K. Martinez, J. Cupitt, D. Saunders, R. Pillay, Ten years of art imaging research. Proc. Inst. Electr. Electron. Eng. 90(1), 28–41 (2002)

    Article  Google Scholar 

  5. C. Fischer, I. Kakoulli, Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Rev. Conserv. 7, 3–16 (2006)

    Google Scholar 

  6. G. Karagiannis, C. Salpistis, G. Sergiadis, I. Chryssoulakis, Non-destructive multispectral reflectoscopy between 800 and 1900 nm: an instrument for the investigation of the stratigraphy in paintings. Rev. Sci. Instrum. 78(6), 06511 (2007)

    Google Scholar 

  7. C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics. Acc. Chem. Res. 43, 847–856 (2010)

    Article  Google Scholar 

  8. R. Fontana, M. Barucci, P. Carcagnì, C. Daffara, E. Pampaloni, L. Pezzati, Autofocus laser system for multi-NIR scanning imaging of painting surfaces, in ed. by L. Pezzati, R. Salimbeni. SPIE Proceeding, Optics for Arts, Architecture, and Archaeology III, 8084 (2011), 8084051-9

  9. C. Daffara, R. Fontana, Multispectral Infrared Reflectography to Differentiate Features in Paintings. Microsc. Microanal. 17, 691–695 (2011)

    Article  ADS  Google Scholar 

  10. L. Csefalvayova, M. Strlic, H. Karjalainen, Quantitative NIR chemical imaging in heritage science. Anal. Chem. 83, 5101–5106 (2011)

    Article  Google Scholar 

  11. H. Liang, Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 106, 309–323 (2012)

    Article  ADS  Google Scholar 

  12. P. Ricciardi, J.K. Delaney, M. Facini, J.G. Zeibel, M. Picollo, S. Lomax, M. Loew, Near infrared reflectance imaging spectroscopy to map paint binders in Situ on illuminated manuscripts. Angew. Chem. Int. Ed. 51, 5607–5610 (2012)

    Article  Google Scholar 

  13. C. Cucci, A. Casini, M. Picollo, L. Stefani, Extending hyperspectral imaging from Vis to NIR spectral regions: a novel scanner for the in-depth analysis of polychrome surfaces, in ed. by L. Pezzati, P. Targowski. SPIE Proceedings, Optics for Arts, Architecture, and Archaeology IV, 8790 (2013), 870091-9

  14. F. Rosi, C. Miliani, R. Braun, R. Harig, D. Sali, B.G. Brunetti, A. Sgamellotti, Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew. Chem. Int. Ed. 52, 5258–5261 (2013)

    Article  Google Scholar 

  15. R.W.G. Hunt, Measuring Colour, 3rd edn. (Fountain Press, England, 1998)

    Google Scholar 

  16. G. Wyszecki, W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae -, 2nd edn. (Wiley-Interscience Publication, U.S.A, 1982)

    Google Scholar 

  17. C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, D. Bencini, A scanning device for VIS-NIR multispectral imaging of paintings. J. Opt. A Pure Appl. Opt. 10, 064011 (2008). (9 pp)

    Article  ADS  Google Scholar 

  18. P. Carcagnì, Patria A. Della, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Multispectral imaging of paintings by optical scanning. Opt. Lasers Eng. 45, 360–367 (2007)

    Article  Google Scholar 

  19. D. Vazquez, A. Alvarez, J. Muñoz, A. Garcia-Botella, Spectral and colorimetric measurements for cultural heritage, proceedings of the colour and space in cultural heritage session at the Denkmäler 3D conference, in ed. by A. Bentkowska-Kafel and O. Murphy, From low-cost to high-tech. 3D-Doc. in Archaeology & Monument Preservation, The LWL Industrial Museum Zeche Zollern, Dortmund, 18 October 2013, COSCH e-Bulletin No. 1 (2014)

  20. Lorusso S., Natali A., Matteucci C.: Colorimetry applied to the field of cultural heritage: examples of study cases, Conservation Science in Cultural Heritage, [S.l.], v. 7, Jul. 2008. ISSN 1973-9494. http://conservation-science.unibo.it/article/view/1252. Accessed: 28 Feb 2015. doi:10.6092/issn.1973-9494/1252

  21. G.Y. Sirat, D. Psaltis, Conoscopic holography. Opt. Lett. 10(1), 4–6 (1985)

    Article  ADS  Google Scholar 

  22. G.Y. Sirat, D. Psaltis, Conoscopic holograms. Opt. Comm. 9(65), 243–245 (1988)

    Article  ADS  Google Scholar 

  23. R. Fontana, M.C. Gambino, M. Greco, L. Marras, M. Materazzi, E. Pampaloni, L. Pezzati, The diagnostics of statues: a high-precision surface analysis of roughness of Michelangelo’s David. Proc. SPIE 5146, 236–243 (2003)

    Article  ADS  Google Scholar 

  24. R. Fontana, M.C. Gambino, M. Greco, L. Marras, M. Materazzi, E. Pampaloni, L. Pezzati, P. Poggi, Integrating 2D and 3D data for diagnostics of panel paintings. Proc. SPIE 5146, 88–98 (2003)

    Article  ADS  Google Scholar 

  25. R. Fontana, C. Mazzotta, M.C. Gambino, M. Greco, E. Pampaloni, L. Pezzati, High-resolution 3D survey of artworks. Proc. SPIE 5457, 719–726 (2004)

    Article  ADS  Google Scholar 

  26. L. Marras, R. Fontana, M.C. Gambino, M. Greco, M. Materazzi, E. Pampaloni, L. Pezzati, P. Poggi, Surface roughness relief, in ed. by K. Dickmann, C. Fotakis, J.F. Asmus, Springer Proceedings in Physics, Vol. 100, p. 477, (2005)

  27. M.C. Gambino, R. Fontana, M. Greco, E. Pampaloni, L. Pezzati, P. Pingi, P. Cignoni, R. Scopigno, Supporting the Restoration of the Minerva of Arezzo, in ed. by K. Dickmann, C. Fotakis, J.F. Asmus, Springer Proceedings in Physics, Vol. 100, p. 505, (2005)

  28. R. Fontana, M.C. Gambino, M. Greco, L. Marras, M. Materazzi, E. Pampaloni, A. Pelagotti, L. Pezzati, P. Poggi, C. Sanapo, 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci. Proc. SPIE 5857, 166–176 (2005)

    ADS  Google Scholar 

  29. R. Bellucci, P. Carcagnì, A. Della Patria, R. Fontana, C. Frosinini, M.C. Gambino, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, R. Piccolo, P. Poggi, Integration of image data from 2D and 3D optical techniques for painting conservation applications. Imaging Sci. J. 55, 80–89 (2007)

    Article  Google Scholar 

  30. E. Pampaloni, R. Bellucci, P. Carcagnì, A. Casaccia, R. Fontana, M.C. Gambino, R. Piccolo, P. Pingi, L. Pezzati, Three-dimensional survey of paint layer, Proc. SPIE 6618, 66180F-1–66180F-10 (2007)

  31. T. Arecchi, M. Bellini, C. Corsi, et al., in Proceedings of the International Topical Meeting on Optical Sensing and Artificial Vision (OSAV2004), St. Petersburg, Rus-sia, 2004 (St. Petersburg, 2004), pp. 225–230

  32. P. Targowski, B. Rouba, M. Wojtkowski, A. Kowalczyk, The application of optical coherence tomography to nondestructive examination of museum objects. Stud. Conserv. 49(2), 107–114 (2004)

    Google Scholar 

  33. H. Liang, M. G. Cid, R. G. Cucu, et al., Optical coherence tomography: a non-invasive technique applied to conservation of paintings, in Optical Methods for Arts and Archaeology, vol. 5857 of Proceedings of SPIE, pp. 9 pages,Munich, Germany, June 2005

  34. T. Bajraszewski, I. Gorczynska, B. Rouba, and P. Targowski, Spectral domain optical coherence tomography as the profilometric tool for examination of the environmental influence on paintings on canvas, in ed. by J. Nimmrichter, W. Kautek, M. Schreiner, Proceedings of the 6th International Congress on Lasers in the Conservation of Artworks (LACONA VI’05), Vienna, Austria, September 2006

  35. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, A. Tortora, Opt. Spectrosc. 101, 23 (2006). doi:10.1134/S0030400X06070058

    Article  ADS  Google Scholar 

  36. P. Targowski, B. Rouba, M. Góra, L. Tyminska-Widmer, J. Marczak, A. Kowalczyk, Appl. Phys. A 92, 1 (2008). doi:10.1007/s00339-008-4446-x

    Article  ADS  Google Scholar 

  37. P. Targowski, M. Ivanicka, Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A 106, 265–277 (2012)

    Article  ADS  Google Scholar 

  38. G. Latour, J.P. Echard, B. Soulier, I. Emond, S. Vaiedelich, M. Elias, Appl. Opt. 48, 6485 (2009)

    Article  ADS  Google Scholar 

  39. P. Targowski, M. Iwanicka, L. Tyminska-Widmer, M. Sylwestrzak, E.A. Kwiatkowska, Acc. Chem. Res. 46, 826 (2010). doi:10.1021/ar900195d

    Article  Google Scholar 

  40. H. Liang, R. Lange, B. Peric, M. Spring, Optimum spectral window for imaging of art with optical coherence tomography. Appl. Phys. B 111(4), 589–602 (2013)

    Article  ADS  Google Scholar 

  41. C.S. Cheung, J.M.O. Daniel, M. Tokurakawa, W.A. Clarkson, H. Liang, Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials. Opt. Lett. 39(22), 6509–6512 (2014)

    Article  ADS  Google Scholar 

  42. C.S. Cheung, M. Spring, H. Liang, Ultra-high resolution Fourier domain optical coherence tomography for old master paintings. Opt. Express 23(8), 10145–10157 (2015). doi:10.1364/OE.23.010145

    Article  ADS  Google Scholar 

  43. C.S. Cheung, J.M.O. Daniel, M. Tokurakawa, W.A. Clarkson, H. Liang, High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source, Opt. Express 23 (2015). doi:10.1364/OE.23.001992

  44. M. Alfeld, J.A.C. Broekaert, Mobile depth profiling and sub-surface imaging techniques for historical paintings—a review. Spectrochim. Acta Part B 88, 211–230 (2013)

    Article  ADS  Google Scholar 

  45. R. Fontana, M. Barucci, E. Pampaloni, J. Striova, L. Pezzati, From Leonardo to Raffaello: insights by Vis-IR Reflectography, in Acta Artis Academica, Interpretation of Fine Art’s Analysis in Diverse Contexts 2014, Praga 2014

  46. M. Bacci, A study of the blue colours used by Telemaco Signorini (1835–1901). J. Cult. Herit. 10, 275–280 (2009)

    Article  Google Scholar 

  47. Y. Zhao, Improvement of Spectral Imaging by Pigment Mapping, in 13th Color Imaging Conference Final Program and Proceedings (2005a)

  48. S. Staniforth, Retouching and color matching: the restorer and metamerism. Stud. Conserv. 30(3), 101–111 (1985)

    Article  Google Scholar 

  49. G.A. Agoston, Color Theory and Its Application in Art and Design, 2d edn. (Springer, Berlin, 1987)

    Book  Google Scholar 

  50. E. Allen, Prediction of optical properties of paints from theory (with special reference to microvoid paints). J. Paint Technol. 45(584), 65–72 (1973)

    Google Scholar 

  51. ASTM Standard E 308, Standard practice for computing the colors of objects by using the CIE system. In Annual Book of ASTM Standards (Philadelphia, American, Society for Testing and Materials, 1996)

  52. ASTM Standard E 313, Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. In Annual Book of ASTM, Standards (Philadelphia, American Society for Testing and Materials, 1996)

  53. CIE, Radiometric and photometric characteristics of materials and their measurement. CIE Technical Report 38, Wien, 1977

  54. J. Delaney, J. Zeibel, M. Thoury, R. Littleton, M. Palmer, K. Morales, E. de la Rie, A. Hoenigswald, Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials in situ. Appl. Spectrosc. 64, 584–594 (2010)

    Article  ADS  Google Scholar 

  55. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, K.M. Morales, M. Palmer, E. René de la Rie, Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography. In Proc. SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II, 739103 (July 07, 2009); doi:10.1117/12.827493

  56. T. Moon, M.R. Schilling, S. Thirkettle, A Note on the Use of False-Color Infrared Photography in Conservation, Studies in Conservation, Vol. 37, No. 1 (1992), pp. 42–52

  57. P. Carcagnì, C. Daffara, R. Fontana, M.C. Gambino, M. Mastroianni, C. Mazzotta, E. Pampaloni, L. Pezzati, Optical micro-profilometry for archaeology. Proc. SPIE 5857, 118–128 (2005)

    ADS  Google Scholar 

  58. R. Fontana, M. Barucci, E. Pampaloni, L. Pezzati, C. Daffara, A study of surface optical properties for characterizing the cleaning process of paintings, Optics for Arts, Architecture, and Archeology IV, Luca Pezzati, Piotr Targowski eds, Prot. of SPIE Vol. 8790 87900O, 2013

  59. Elizabeth Walmsley, Colin Fletcher, John Delaney, Evaluation of system performance of near-infrared imaging devices. Stud. Conserv. 37, 120–131 (1992)

    Article  Google Scholar 

  60. Elizabeth Walmsley, Catherine Metzger, John K. Delaney, Colin Fletcher, Improved visualization of underdrawings with solid-state detectors operating in the infrared. Stud. Conserv. 39, 217–231 (1994)

    Article  Google Scholar 

  61. J.K. Delaney, C. Metzger, E. Walmsley, C. Fletcher, Examination of the visibility of underdrawing lines as a function of wavelenght, in ICOM Committee for Conservation, Proceedings of the 10th Triennial Meeting Washington, DC, USA 22–27 August 1993

  62. J.D. Lindberg, M.S. Smith, Am. Miner. 58, 1062–1064 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fontana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana, R., Dal Fovo, A., Striova, J. et al. Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes. Appl. Phys. A 121, 957–966 (2015). https://doi.org/10.1007/s00339-015-9505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9505-5

Keywords

Navigation