Skip to main content
Log in

Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 01 June 2016

Abstract

Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric–volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin–Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal–organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models’ prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg−1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.K.N. Newhouse, in Proceedings of Annual Merit Review Meetings of US DOE (2014), http://www.hydrogen.energy.gov/pdfs/review14/st047_newhouse_2014_o.pdf

  2. Y.-S. Bae, R.Q. Snurr, Microporous Mesoporous Mater. 132, 300 (2010)

    Article  Google Scholar 

  3. B. Hardy, C. Corgnale, R. Chahine, M.-A. Richard, S. Garrison, D. Tamburello, D. Cossement, D. Anton, Int. J. Hydrogen Energy 37, 5691 (2012)

    Article  Google Scholar 

  4. S. Ubaid, R. Zacharia, J. Xiao, R. Chahine, P. Bénard, P. Tessier, Int. J. Hydrogen Energy 40, 9314 (2015)

  5. J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media (Kluwer Academic Publishers, The Netherlands, 1991)

    MATH  Google Scholar 

  6. M.-A. Richard, D. Cossement, P.-A. Chandonia, R. Chahine, D. Mori, K. Hirose, AIChE J. 55, 2985 (2009)

    Article  Google Scholar 

  7. E. Dundar, R. Zacharia, R. Chahine, P. Benard, Fluid Phase Equilibr 363, 74 (2014)

    Article  Google Scholar 

  8. J. Xiao, L. Tong, C. Deng, P. Bénard, R. Chahine, Int. J. Hydrogen Energy 35, 8106 (2010)

    Article  Google Scholar 

  9. L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38, 1294 (2009)

    Article  Google Scholar 

  10. J. Purewal, D. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer, U. Müller, D.J. Siegel, J. Phys. Chem. C 116, 20199 (2012)

    Article  Google Scholar 

  11. A. Dailly, J.J. Vajo, C.C. Ahn, J. Phys. Chem. B 2006, 110 (1099)

    Google Scholar 

  12. B. Panella, M. Hirscher, H. Pütter, U. Müller, Adv. Funct. Mater. 16, 520 (2006)

    Article  Google Scholar 

  13. B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, ChemPhysChem 9, 2181 (2008)

    Article  Google Scholar 

  14. W. Zhou, H. Wu, M.R. Hartman, T. Yildirim, J. Phys. Chem. C 111, 16131 (2007)

    Article  Google Scholar 

  15. S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129, 14176 (2007)

    Article  Google Scholar 

  16. M. Schlichtenmayer, B. Streppel, M. Hirscher, Int. J. Hydrogen Energy 36, 586 (2011)

    Article  Google Scholar 

  17. S. Ozawa, S. Kusumi, Y. Ogino, J. Colloid Interface Sci. 56, 83 (1976)

    Article  ADS  Google Scholar 

  18. A. Züttel, P. Sudan, P. Mauron, P. Wenger, Appl. Phys. A 78, 941 (2004)

    Article  ADS  Google Scholar 

  19. N.P. Stadie, Dissertation (Ph.D.), California Institute of Technology (2013)

  20. J. Purewal, Dissertation (Ph.D.), California Institute of Technology (2010)

  21. W. Zimmermann, J.U. Keller, Thermochim. Acta 405, 31 (2003)

    Article  Google Scholar 

  22. E.W. Lemmon, M.L. Huber, M.O. McLinden, in NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2013 (National Institute of Standards and Technology, 2013)

  23. P.B. Whittaker, X. Wang, K. Regenauer-Lieb, H.T. Chua, Phys. Chem. Chem. Phys. 15, 473 (2013)

    Article  Google Scholar 

  24. R. Zacharia, D. Cossement, L. Lafi, R. Chahine, J. Mater. Chem. 20, 2145 (2010)

    Article  Google Scholar 

  25. E. Poirier, R. Chahine, P. Bénard, L. Lafi, G. Dorval-Douville, P.A. Chandonia, Langmuir 22, 8784 (2006)

    Article  Google Scholar 

  26. G. Dorval-Douville, Master Thesis, Université du Québec a trois rivieres (2006)

  27. A. Mouahid, D. Bessieres, F. Plantier, G. Pijaudier-Cabot, J. Therm. Anal. Calorim. 2012, 109 (1077)

    Google Scholar 

  28. L.E. Vilchiz-Bravo, A. Pacheco-Vega, B.E. Handy, Meas. Sci. Technol. 21, 115103 (2010)

    Article  ADS  Google Scholar 

  29. L.E. Vilchiz, A. Pacheco-Vega, B.E. Handy, Thermochim. Acta 439, 110 (2005)

    Article  Google Scholar 

  30. J.A. Dunne, M. Rao, S. Sircar, R.J. Gorte, A.L. Myers, Langmuir 12, 5896 (1996)

    Article  Google Scholar 

  31. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010)

    Article  Google Scholar 

  32. F.o. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications (Academic Press, San Diego, 1999)

    Google Scholar 

  33. M. Schlichtenmayer, M. Hirscher, J. Mater. Chem. 22, 10134 (2012)

    Article  Google Scholar 

  34. S. Bourrelly, P.L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey, J. Am. Chem. Soc. 127, 13519 (2005)

    Article  Google Scholar 

  35. S. Maurice, Ph.D. Thesis, Max-Planck-Institut für Intelligente Systeme, Stuttgart (2012)

  36. B. Panella, K. Hones, U. Muller, N. Trukhan, M. Schubert, H. Putter, M. Hirscher, Angew. Chem. Int. Edit. 47, 2138 (2008)

    Article  Google Scholar 

  37. I. Krkljus, M. Hirscher, Microporous Mesoporous Mater. 142, 725 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The Canadian contribution is based on research financially supported by NSERC and Air Liquide. The German contribution was partially funded by the German Research Foundation (SPP 1362), the European Commission DG Research (SES6-2006-518271/NESSHY) and the European Hy-Co program, financed by the German Federal Ministry of Economics and Technology (BMWi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zacharia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

339_2015_9484_MOESM1_ESM.docx

Details of adsorption calorimetry, isosteric method, volume calibration and adsorption isotherms are available (DOCX 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloutse, A.F., Zacharia, R., Cossement, D. et al. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models. Appl. Phys. A 121, 1417–1424 (2015). https://doi.org/10.1007/s00339-015-9484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9484-6

Keywords

Navigation