Skip to main content
Log in

Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rapid thermal annealing effects on the electrical, structural and surface morphological properties of a fabricated Ti/p-GaN Schottky diode (SD) have been investigated. The AFM results showed that the surface morphology of the Ti/p-GaN SD is reasonably smooth at different annealing temperatures. The estimated Schottky barrier height (SBH) of the as-deposited and 200 °C annealed Ti/p-GaN SDs is found to be 0.88 eV (IV)/1.02 eV (CV) and 0.91 eV (IV)/1.11 eV (CV). Results showed that the SBH increases to 0.98 eV (IV)/1.26 eV (CV) upon annealing at 300 °C for 1 min in N2 ambient. However, the SBH slightly decreases to 0.94 eV (IV)/1.17 eV (CV) after annealing at 400 °C. Using Norde method and Cheung’s functions, the series resistance, SBH and ideality factor of the Ti/p-GaN SD are estimated and discussed at various annealing temperatures. Also, the difference between the SBHs calculated by IV and CV methods are discussed. Further, the interface state density N ss of the Ti/p-GaN SD is calculated and it is found to be decreases upon annealing at 300 °C and then slightly increases after annealing at 400 °C. Experimental electrical results are also correlated with the interfacial microstructure of the Ti/p-GaN SD. The SIMS and XRD results revealed that the increase or decrease in the SBHs of the Ti/p-GaN SD upon annealing could be attributed to the formation of Ti–N and Ga–Ti interfacial phases at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.B. Lisesivdin, S. Demirezen, M.D. Calıskan, A. Yildiz, M. Kasap, S. Ozçelik, E. Ozbay, Semicond. Sci. Technol. 23, 095008 (2008)

    Article  ADS  Google Scholar 

  2. Y.J. Wang, R. Kaplan, H.K. Ng, K. Doverspike, D.K. Gaskill, T. Ikedo, I. Akasaki, H. Amono, J. Appl. Phys. 79, 8007 (1996)

    Article  ADS  Google Scholar 

  3. J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, C.M. Chang, Appl. Phys. Lett. 72, 3317 (1998)

    Article  ADS  Google Scholar 

  4. F.D. Auret, S.D. Goodman, F.K. Koschnick, J.M. Spaeth, B. Beaumont, P. Gibart, Appl. Phys. Lett. 74, 2173 (1999)

    Article  ADS  Google Scholar 

  5. Y.K. Su, F.S. Juang, M.H. Chen, Jpn. J. Appl. Phys. 142, 2257 (2003)

    Article  ADS  Google Scholar 

  6. S. Pearton, Mater. Sci. Eng., B 82, 227 (2001)

    Article  Google Scholar 

  7. J.K. Sheu, Y.K. Su, G.C. Chi, W.C. Chen, C.Y. Chen, C.N. Huang, J.M. Hong, Y.C. Yu, C.W. Wang, E.K. Lin, J. Appl. Phys. 83, 6 (1998)

    Article  Google Scholar 

  8. A. Ashery, A.A.M. Farag, R. Mahani, Microelectron. Eng. 87, 2218 (2010)

    Article  Google Scholar 

  9. M.W. Wang, J.O. McCaldin, J.F. Swenberg, T.C. McGill, R.J. Hauenstein, Appl. Phys. Lett. 66, 1974 (1995)

    Article  ADS  Google Scholar 

  10. W.A. Harrison, J. Tersoff, J. Vac. Sci. Technol., B 4, 1068 (1986)

    Article  Google Scholar 

  11. K.A. Rickert, A.B. Ellis, J.-K. Kim, J.-L. Lee, F.J. Himpsel, F. Dwikusuma, T.F. Kuech, J. Appl. Phys. 92, 6671 (2002)

    Article  ADS  Google Scholar 

  12. L.S. Yu, D. Qiao, L. Jia, S.S. Lau, Y. Qi, K.M. Lau, Appl. Phys. Lett. 79, 4536 (2001)

    Article  ADS  Google Scholar 

  13. K. Shiojima, T. Sugahara, S. Sakai, Appl. Phys. Lett. 74, 1936 (1999)

    Article  ADS  Google Scholar 

  14. L.S. Yu, L. Jia, D. Qiao, S.S. Lau, J. Li, J.Y. Lin, H.X. Jiang, I.E.E.E. Trans, Electron Devices 50, 292 (2003)

    Article  ADS  Google Scholar 

  15. Y.-J. Lin, Appl. Phys. Lett. 86, 122109 (2005)

    Article  ADS  Google Scholar 

  16. K. Shiojima, T. Sugahara, S. Sakai, Appl. Phys. Lett. 77, 4353 (2000)

    Article  ADS  Google Scholar 

  17. J.W. Kim, J.W. Lee, Appl. Surf. Sci. 250, 247 (2005)

    Article  ADS  Google Scholar 

  18. C.K. Tan, A.A. Aziz, Z. Hassan, F.K. Yam, C.W. Lim, A.Y. Hudeish, Mater. Sci. Forum 517, 247 (2006)

    Article  Google Scholar 

  19. T.H. Tsai, J.R. Huang, K.W. Lin, C.W. Hung, W.C. Hsu, H.I. Chen, W.C. Liu, Electrochem. Solid-State Lett. 10, J158 (2007)

    Article  Google Scholar 

  20. Y.Y. Tsai, K.W. Lin, H.-I. Chen, I.-P. Liu, C.W. Hung, T.P. Chen, T.H. Tsai, L.Y. Chen, K.Y. Chu, W.C. Liu, J. Appl. Phys. 104, 024515 (2008)

    Article  ADS  Google Scholar 

  21. Y. Fukushima, K. Ogisu, M. Kuzuhara, K. Shiojima, Phys. Status Solidi C 6, S856 (2009)

    Article  ADS  Google Scholar 

  22. Y. Park, K.-S. Ahn, H. Kim, Jpn. J. Appl. Phys. 51, 09MK01 (2012)

    Article  Google Scholar 

  23. S.-H. Jang, J.-S. Jang, Electron. Mater. Lett. 9, 245 (2013)

    Article  ADS  Google Scholar 

  24. Y.-Y. Choi, S. Kim, M. Oh, H. Kim, Superlattices Microstruct. 77, 76 (2015)

    Article  ADS  Google Scholar 

  25. M. Naganawa, T. Aoki, J.-S. Son, H. Amano, K. Shiojima, Phys. Status Solidi B 252, 1024 (2015)

    Article  ADS  Google Scholar 

  26. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarandon, Oxford, 1988)

    Google Scholar 

  27. S.M. Sze, Physics of Semiconductor Devices (Willey, New York, 1981)

    Google Scholar 

  28. T. Sands, Appl. Phys. Lett. 52, 197 (1988)

    Article  ADS  Google Scholar 

  29. B. Sahin, H. Cetin, E. Ayyildiz, Solid-State Commun. 135, 490 (2005)

    Article  ADS  Google Scholar 

  30. R.T. Tung, J.P. Sullivan, F. Schrey, Mater. Sci. Eng., B 14, 266 (1992)

    Article  Google Scholar 

  31. G. Greco, P. Prystawko, M. Leszczynski, R.L. Nigro, V. Raineri, F. Roccaforte, J. Appl. Phys. 110, 123703 (2011)

    Article  ADS  Google Scholar 

  32. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    Article  ADS  Google Scholar 

  33. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  34. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  35. B. Boyarbay, H. Cetin, M. Kaya, E. Ayyildiz, Microelectron. Eng. 85, 721 (2008)

    Article  Google Scholar 

  36. S. Dogan, S. Duman, B. Gurbulak, S. Tuzeman, H. Morkoc, Phys. E 41, 646 (2009)

    Article  Google Scholar 

  37. J.L. Freeouf, T.N. Jackson, S.E. Laux, J.M. Woodal, Appl. Phys. Lett. 40, 634 (1982)

    Article  ADS  Google Scholar 

  38. L.D. Rao, V.R. Reddy, V. Janardhanam, M.-S. Kang, B.-C. Son, C.-J. Choi, Superlattices Microstruct. 65, 206 (2014)

    Article  ADS  Google Scholar 

  39. C. Fontaine, T. Okumura, K.N. Tu, J. Appl. Phys. 54, 1404 (1983)

    Article  ADS  Google Scholar 

  40. L. Geng, F.A. Ponce, S. Tanaka, H. Omiya, Y. Nakagawa, Phys. Status Solidi A 188, 803 (2001)

    Article  ADS  Google Scholar 

  41. H.C. Card, E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971)

    Article  ADS  Google Scholar 

  42. S. Karatas, S. Altindal, A. Turut, A. Ozmen, Appl. Surf. Sci. 217, 250 (2003)

    Article  ADS  Google Scholar 

  43. S. Karatas, A. Turut, Phys. B 381, 199 (2006)

    Article  ADS  Google Scholar 

  44. B. Prasanna Lakshmi, V.R. Reddy, V. Janardhanam, M.S.P. Reddy, J.-H. Lee, Appl. Phys. A 113, 713 (2013)

    Article  ADS  Google Scholar 

  45. W. Monch, Semiconductor Surfaces and Interfaces, 3rd edn. (Springer, Berlin, 2001)

    Book  Google Scholar 

  46. T.S. Haung, R.S. Fang, Solid-State Electron. 37, 1461 (1994)

    Article  ADS  Google Scholar 

  47. J.D. Guo, F.M. Pan, M.S. Feng, R.J. Guo, P.F. Chou, C.Y. Chang, J. Appl. Phys. 80(3), 1623 (1996)

    Article  ADS  Google Scholar 

  48. J. Wang, D.G. Zhao, Y.P. Sun, L.H. Duan, Y.T. Wang, S.M. Zhang, H. Yang, S. Zhou, M. Wu, J. Phys. D Appl. Phys. 36, 1018 (2003)

    Article  ADS  Google Scholar 

  49. V.R. Reddy, P.K. Rao, Microelectron. Eng. 85, 470 (2008)

    Article  Google Scholar 

  50. M.S.P. Reddy, V.R. Reddy, C.-J. Choi, J. Alloys Compd. 503, 186 (2010)

    Article  Google Scholar 

  51. I. Jyothi, V.R. Reddy, C.-J. Choi, J. Mater. Sci.: Mater. Electron. 22, 286 (2011)

    Google Scholar 

  52. N.N.K. Reddy, V.R. Reddy, C.-J. Choi, Mater. Chem. Phys. 130, 1000 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, G., Rao, L.D. & Reddy, V.R. Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode. Appl. Phys. A 121, 131–140 (2015). https://doi.org/10.1007/s00339-015-9396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9396-5

Keywords

Navigation