Skip to main content
Log in

Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a general third-order beam theory that accounts for nanostructure-dependent size effects and two-constituent material variation through the nanobeam thickness, i.e., functionally graded material (FGM) beam is presented. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. A detailed derivation of the equations of motion based on Eringen nonlocal theory using Hamilton’s principle is presented, and a closed-form solution is derived for buckling behavior of the new model with various boundary conditions. The nonlocal elasticity theory includes a material length scale parameter that can capture the size effect in a functionally graded material. The proposed model is efficient in predicting the shear effect in FG nanobeams by applying third-order shear deformation theory. The proposed approach is validated by comparing the obtained results with benchmark results available in the literature. In the following, a parametric study is conducted to investigate the influences of the length scale parameter, gradient index, and length-to-thickness ratio on the buckling of FG nanobeams and the improvement on nonlocal third-order shear deformation theory comparing with the classical (local) beam model has been shown. It is found out that length scale parameter is crucial in studying the stability behavior of the nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Koizumi, Ceram. Trans. 34, 3 (1993)

    Google Scholar 

  2. L.W. Byrd, V. Birman, Appl. Mech. Rev. 60, 195 (2007)

    Article  ADS  Google Scholar 

  3. F. Tornabene, N. Fantuzzi, E. Viola, R.C. Batra, Compos. Struct. 119, 67–89 (2015)

    Article  Google Scholar 

  4. F. Tornabene, N. Fantuzzi, M. Bacciocchi, Compos. B Eng. 67, 490–509 (2014)

    Article  Google Scholar 

  5. H. Huang, Q. Han, Compos. Struct. 117, 135–142 (2014)

    Article  Google Scholar 

  6. A. Idesman, Compos. Struct. 117, 298–308 (2014)

    Article  Google Scholar 

  7. B. Shariat, Y. Liu, Q. Meng, G. Rio, Acta Mater. 61, 3411–3421 (2013)

    Article  Google Scholar 

  8. A.S. Mahmud, Y. Liu, T. Nam, Phys. Scr. 2007, 222 (2007)

    Article  Google Scholar 

  9. C. Lü, W. Chen, C. Lim, Compos. Sci. Technol. 69, 1124–1130 (2009)

    Article  Google Scholar 

  10. B.S. Shariat, Y. Liu, G. Rio, Mater. Res. Bull. 48, 5099–5104 (2013)

    Article  Google Scholar 

  11. Q. Meng, Y. Liu, H. Yang, B.S. Shariat, T.-H. Nam, Acta Mater. 60, 1658–1668 (2012)

    Article  Google Scholar 

  12. Y. Fu, H. Du, S. Zhang, Mater. Lett. 57, 2995–2999 (2003)

    Article  Google Scholar 

  13. A.S. Mahmud, Y. Liu, T.-H. Nam, Smart Mater. Struct. 17, 015031 (2008)

    Article  ADS  Google Scholar 

  14. Z. Lee, C. Ophus, L. Fischer, N. Nelson-Fitzpatrick, K. Westra, S. Evoy, V. Radmilovic, U. Dahmen, D. Mitlin, Nanotechnology 17, 3063 (2006)

    Article  Google Scholar 

  15. B.S. Shariat, Y. Liu, G. Rio, Smart Mater. Struct. 22, 025030 (2013)

    Article  ADS  Google Scholar 

  16. C. Craciunescu, M. Wuttig, J. Optoelectr. Adv. Mater. 5, 139–146 (2003)

    Google Scholar 

  17. S. Miyazaki, Y. Fu, W. Huang, Thin Film Shape Memory Alloys: Fundamentals and Device Applications (Cambridge University Press, 2009)

  18. C. Lü, C. Lim, W. Chen, Int. J. Solids Struct. 46, 1176–1185 (2009)

    Article  MATH  Google Scholar 

  19. B.S. Shariat, Y. Liu, G. Rio, J. Alloys. Compd. 541, 407–414 (2012)

    Article  Google Scholar 

  20. Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sens. Actuators A: Phys. 112, 395–408 (2004)

    Article  Google Scholar 

  21. R. Batra, M. Porfiri, D. Spinello, J. Sound Vib. 309, 600–612 (2008)

    Article  ADS  Google Scholar 

  22. H. Chen, G. Zhang, K. Richardson, J. Luo, J. Nanomater. 2008, 47 (2008)

    Google Scholar 

  23. D. Hasanyan, R. Batra, S. Harutyunyan, J. Therm. Stress. 31, 1006–1021 (2008)

    Article  Google Scholar 

  24. X.L. Jia, J. Yang, S. Kitipornchai, C.W. Lim, Appl. Math. Model. 36, 1875–1884 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Lun, P. Zhang, F. Gao, H. Jia, Microfabr. Technol. 120, 61–64 (2006)

    Google Scholar 

  26. B. Mohammadi-Alasti, G. Rezazadeh, A.-M. Borgheei, S. Minaei, R. Habibifar, Compos. Struct. 93, 1516–1525 (2011)

    Article  Google Scholar 

  27. Y. Moser, M.A. Gijs, J. Microelectromech. Syst. 16, 1349–1354 (2007)

    Article  Google Scholar 

  28. A. Witvrouw, A. Mehta, Mater. Sci. Forum 492, 255–260 (2005)

    Article  Google Scholar 

  29. J. Zhang, Y. Fu, Meccanica 47, 1649–1658 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian, in ASME 2009 international design engineering technical conferences and computers and information in engineering conference (2009), pp. 539–544

  31. M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, R. Superfine, Nature 389, 582–584 (1997)

    Article  ADS  Google Scholar 

  32. D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59, 12678 (1999)

    Article  ADS  Google Scholar 

  33. A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, M. Treacy, Physical Rev. B 58, 14013 (1998)

    Article  ADS  Google Scholar 

  34. B. Arash, Q. Wang, Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  35. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    MATH  Google Scholar 

  36. J. Peddieson, G.R. Buchanan, R.P. McNitt, Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  37. T. Aksencer, M. Aydogdu, Phys. E 43, 954–959 (2011)

    Article  Google Scholar 

  38. R. Ansari, A. Shahabodini, H. Rouhi, Compos. Struct. 95, 88–94 (2013)

    Article  Google Scholar 

  39. M. Aydogdu, Phys. E 41, 1651–1655 (2009)

    Article  Google Scholar 

  40. A. Ghorbanpour, A.R. Arani, S. Shajari, A. Amir, Loghman. Phys. E 45, 109–121 (2012)

    Article  Google Scholar 

  41. Z. Khodami Maraghi, A. Ghorbanpour Arani, R. Kolahchi, S. Amir, M.R. Bagheri, Composites Part B: Engineering 45, 423–432 (2013)

    Article  Google Scholar 

  42. H.-L. Lee, W.-J. Chang, J. Appl. Phys. 103, 024302 (2008)

    Article  ADS  Google Scholar 

  43. S. Narendar, D. Roy Mahapatra, S. Gopalakrishnan, Int. J. Eng. Sci. 49, 509–522 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. J.N. Reddy, Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  45. C.M.C. Roque, A.J.M. Ferreira, J.N. Reddy, Int. J. Eng. Sci. 49, 976–984 (2011)

    Article  MATH  Google Scholar 

  46. L.-L. Ke, Y.-S. Wang, Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  47. H.-T. Thai, Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  48. H.-T. Thai, T.P. Vo, Int. J. Eng. Sci. 54, 58–66 (2012)

    Article  MathSciNet  Google Scholar 

  49. S. Adali, Phys. Lett. A 372, 5701–5705 (2008)

    Article  ADS  MATH  Google Scholar 

  50. Y. Gao, F.M. Lei, Biochem. Biophys. Res. Commun. 387, 467–471 (2009)

    Article  Google Scholar 

  51. T. Murmu, S.C. Pradhan, Comput. Mater. Sci. 47, 721–726 (2010)

    Article  Google Scholar 

  52. H.S. Shen, J. Theor. Biol. 264, 386–394 (2010)

    Article  ADS  Google Scholar 

  53. H.-S. Shen, C.-L. Zhang, Compos. Struct. 92, 1073–1084 (2010)

    Article  Google Scholar 

  54. A.R. Setoodeh, M. Khosrownejad, P. Malekzadeh, Phys. E 43, 1730–1737 (2011)

    Article  Google Scholar 

  55. Y. Yang, C.W. Lim, Nano 06, 363–377 (2011)

    Article  Google Scholar 

  56. R. Ansari, A. Shahabodini, H. Rouhi, Compos. Struct. 100, 323–331 (2013)

    Article  Google Scholar 

  57. R. Artan, A. Tepe, Eur. J. Mech. A. Solids 27, 469–477 (2008)

    Article  ADS  MATH  Google Scholar 

  58. T. Murmu, S. Adhikari, Phys. Lett. A 375, 601–608 (2011)

    Article  ADS  Google Scholar 

  59. T. Murmu, S.C. Pradhan, Mech. Res. Commun. 36, 933–938 (2009)

    Article  MATH  Google Scholar 

  60. S.C. Pradhan, Phys. Lett. A 373, 4182–4188 (2009)

    Article  ADS  MATH  Google Scholar 

  61. S.C. Pradhan, T. Murmu, Comput. Mater. Sci. 47, 268–274 (2009)

    Article  Google Scholar 

  62. M. Asghari, M.T. Ahmadian, M.H. Kahrobaiyan, M. Rahaeifard, Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  63. R. Ansari, R. Gholami, S. Sahmani, Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  64. M. Asghari, M. Rahaeifard, M.H. Kahrobaiyan, M.T. Ahmadian, Mater. Des. 32, 1435–1443 (2011)

    Article  Google Scholar 

  65. M. Janghorban, A. Zare, Phys. E 43, 1602–1604 (2011)

    Article  Google Scholar 

  66. M.H. Kahrobaiyan, M. Rahaeifard, S.A. Tajalli, M.T. Ahmadian, Int. J. Eng. Sci. 52, 65–76 (2012)

    Article  MathSciNet  Google Scholar 

  67. M. Şimşek, H.H. Yurtcu, Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  68. J.N. Reddy, A. Arbind, Ann. Solid Struct. Mech. 3, 15–26 (2012)

    Article  Google Scholar 

  69. B. Akgöz, Ö. Civalek, Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  70. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Appl. Math. Comput. 218, 7406–7420 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  71. K. Kiani, Compos. Struct. 107, 610–619 (2014)

    Article  Google Scholar 

  72. J.N. Reddy, J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  74. P. Asgharifard Sharabiani, M.R. Haeri Yazdi, Compos. B Eng. 45, 581–586 (2013)

    Article  Google Scholar 

  75. M. Şimşek, Comput. Mater. Sci. 61, 257–265 (2012)

    Article  Google Scholar 

  76. A. Nateghi, M. Salamat-talab, J. Rezapour, B. Daneshian, Appl. Math. Model. 36, 4971–4987 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  77. R. Ansari, R. Gholami, S. Sahmani, Arch. Appl. Mech. 83, 1439–1449 (2013)

    Article  MATH  Google Scholar 

  78. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  79. R. Ansari, R. Gholami, S. Sahmani, J. Comput. Nonlinear Dyn. 7, 031009 (2012)

    Article  Google Scholar 

  80. M. Aydogdu, Compos. Sci. Technol. 66, 1248–1255 (2006)

    Article  Google Scholar 

  81. A. Anjomshoa, Meccanica 48, 1337–1353 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  82. M. Darvizeh, A. Darvizeh, R. Ansari, C. Sharma, Compos. Struct. 63, 69–74 (2004)

    Article  Google Scholar 

  83. R. Ansari, S. Sahmani, H. Rouhi, Phys. Lett. A 375, 1255–1263 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, O., Jandaghian, A.A. Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory. Appl. Phys. A 119, 1019–1032 (2015). https://doi.org/10.1007/s00339-015-9061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9061-z

Keywords

Navigation