Skip to main content
Log in

Deposition characteristics of the double nozzles near-field electrospinning

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Interest in near-field electrospinning for high-precision positioning in additional material manufacturing has expanded in recent years. In order to increase the high-precision production rate, a methodology has been proposed to add the number of jets by using nozzle arrays in near-field electrospinning. To define the mutual influence of the jets, deposition characteristics of the double-nozzle near-field electrospinning have been observed. This paper described the work and results of the experimental investigation and the theoretical derivation. Experimentally, such effects are demonstrated through use of a 4 % polyethylene oxide solution. The deposition rule of double nozzle near-field electrospinning has been learned in accordance with Coulomb’s law. Experimental results showed that the mutual distance of the deposition becomes larger with increases in the voltage, needle spacing, and working distance. Theoretical derivation based on the net electric field environment has been studied to verify accuracy of the experimental conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Zhang, M. Fang, Nano Today. 5, 128 (2010)

    Article  Google Scholar 

  2. Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Angew. Chem. 120, 2436 (2008)

    Article  Google Scholar 

  3. X. Wang, G. Zheng, G. He, J. Wei, H. Liu, Y. Lin, J. Zheng, D. Sun, Mater. Lett. 109, 58 (2013)

    Article  Google Scholar 

  4. M. Yu, Y.-Z. Long, B. Sun, Z. Fan, Nanoscale 4, 2783 (2012)

    Article  ADS  Google Scholar 

  5. N. Shojaee, T. Ebadzadeh, A. Aghaei, Mater. Char. 61, 1418 (2010)

    Article  Google Scholar 

  6. X. Wang, B. Ding, G. Sun, M. Wang, J. Yu, Prog. Mater. Sci. 58, 1173 (2013)

    Article  Google Scholar 

  7. J. Li, X. Chen, N. Ai, J. Hao, Q. Chen, S. Strauf, Y. Shi, Chem. Phys. Lett. 514, 141 (2011)

    Article  ADS  Google Scholar 

  8. R. Lameiro, V. Sencadas, S. Lanceros-Mendez, J. Correia, P. Mendes, Proc. Eng. 25, 888 (2011)

    Article  Google Scholar 

  9. J. Lee, J. Jang, H. Oh, Y.H. Jeong, D.-W. Cho, Mater. Lett. 93, 397 (2013)

    Article  Google Scholar 

  10. J. Lee, S.Y. Lee, J. Jang, Y.H. Jeong, D.-W. Cho, Langmuir 28, 7267 (2012)

    Article  Google Scholar 

  11. W. Teo, S. Ramakrishna, Nanotechnology 17, R89 (2006)

    Article  ADS  Google Scholar 

  12. P.D. Dalton, C. Vaquette, B.L. Farrugia, T.R. Dargaville, T.D. Brown, D.W. Hutmacher, Biomater. Sci. 1, 171 (2013)

    Article  Google Scholar 

  13. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. 46, 5670 (2007)

    Article  Google Scholar 

  14. J. Xie, H. Mao, D.-G. Yu, G.R. Williams, M. Jin, Fiber. Polym. 15, 78 (2014)

    Article  Google Scholar 

  15. F.L. Zhou, R.H. Gong, I. Porat, J. Appl. Polym. Sci. 115, 2591 (2010)

    Article  Google Scholar 

  16. W. Zhou, J. He, S. Cui, W. Gao, Fiber. Polym. 12, 431 (2011)

    Article  Google Scholar 

  17. Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. Yarin, R. Dersch, A. Greiner, J. Wendorff, Small 3, 1064 (2007)

    Article  Google Scholar 

  18. I.G. Loscertales, A. Barrero, M. Márquez, R. Spretz, R. Velarde-Ortiz, G. Larsen, J. Am. Chem. Soc. 126, 5376 (2004)

    Article  Google Scholar 

  19. Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, A. Greiner, Adv. Mater. 15, 1929 (2003)

    Article  Google Scholar 

  20. F.L. Zhou, R.H. Gong, I. Porat, Polym. Int. 58, 331 (2009)

    Article  Google Scholar 

  21. C.J. Angammana, S.H. Jayaram, Industry applications. IEEE Trans. 47, 1028 (2011)

    Google Scholar 

  22. Y. Yang, Z. Jia, Q. Li, L. Hou, J. Liu, L. Wang, Z. Guan, M. Zahn, Dielectrics and electrical insulation. IEEE Trans. 17, 1592 (2010)

    Google Scholar 

  23. S. Xie, Y. Zeng, Ind. Eng. Chem. Res. 51, 5336 (2012)

    Article  Google Scholar 

  24. Y. Zheng, X. Liu, Y. Zeng, J. Appl. Polym. Sci. 130, 3221 (2013)

    Article  Google Scholar 

  25. Y. Zheng, Y. Zeng, J. Mater. Sci. 49, 1964 (2014)

    Article  Google Scholar 

  26. Y.Q. Wan, Q. Guo, N. Pan, Thermo-electro-hydrodynamic model for electrospinning process[J]. Int. J. Nonlinear Sci. Numer. Simul. 5(1), 5–8 (2004)

    Article  Google Scholar 

  27. S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Phys. Rev. Lett. 90, 144502 (2003)

    Article  ADS  Google Scholar 

  28. B. Cramariuc, R. Cramariuc, R. Scarlet, L.R. Manea, I.G. Lupu, O. Cramariuc, J. Electrostat. 71, 189 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (51305084), Guangdong Provincial Key Laboratory of Micro-nano Manufacturing Technology and Equipment (GDMNML2013-1), Guangdong Provincial Key Laboratory Construction Project of China (Grant No. 2011A060901026), Key Joint Project of National Natural Science Foundation of China (Grant No. U1134004), Guangdong Innovative Research Team Program (No. 201001G0104781202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, M., Huang, S. et al. Deposition characteristics of the double nozzles near-field electrospinning. Appl. Phys. A 118, 621–628 (2015). https://doi.org/10.1007/s00339-014-8770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8770-z

Keywords

Navigation