Skip to main content
Log in

Effect of temperature oscillation on thermal characteristics of an aluminum thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron–phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C :

Volumetric specific heat capacity

G :

Electron–phonon coupling constant

G k :

\( {{G\left( {T_{\text{p}} - T_{\text{e}} } \right)} \mathord{\left/ {\vphantom {{G\left( {T_{\text{p}} - T_{\text{e}} } \right)} {12\pi k_{\hbox{max} } }}} \right. \kern-0pt} {12\pi k_{\hbox{max} } }} \) Electron–phonon coupling contribution in frequency-dependent solution

I p :

Phonon intensity

I e :

Electron intensity

I o :

Equilibrium intensity

I + :

Forward intensity

I :

Backward intensity

K n :

Kundsen number

k :

Wave number

k e :

Electron thermal conductivity

k p :

Phonon thermal conductivity

L :

Film thickness

\( q_{\text{e}}^{\prime \prime } \) :

Electron heat flux

\( q_{\text{p}}^{\prime \prime } \) :

Phonon heat flux

T :

Equivalent equilibrium temperature

t :

Time

v :

Speed

x :

Cartesian coordinate

Δx :

Grid spacing in the x-direction

Λ:

Mean free path

μ :

Cosine of the azimuthal angle

τ :

Relaxation time

τ d :

C e/G

A:

Acoustic

e:

Electron

k :

Wavenumber

L:

Longitudinal

p:

Phonon

T:

Transverse

References

  1. R. Alkhairy, Green’s function solution for the dual-phase-lag heat equation. Appl. Math. 3, 1170–1178 (2012)

    Article  Google Scholar 

  2. B.S. Yilbas, A.Y. Al-Dweik, S. Bin Mansour, Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating. Phys. B 406(8), 1550–1555 (2011)

    Article  ADS  Google Scholar 

  3. B.S. Yilbas, A.Y. Al-Dweik, Short-pulse heating and analytical solution to non-equilibrium heating process. Phys. B Condens. Matter 417, 28–32 (2013)

    Article  ADS  Google Scholar 

  4. B. Singh, Wave propagation in dual-phase-lag anisotropic thermoelasticity. Contin. Mech. Thermodyn. 25, 675–683 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. B.S. Yilbas, Improved formulation of electron kinetic theory approach for laser short-pulse heating. Int. J. Heat Mass Transf. 49(13–14), 2227–2238 (2006)

    Article  MATH  Google Scholar 

  6. S. Bin Mansoor, B.S. Yilbas, Radiative phonon transport in silicon and collisional energy transfer in aluminum films due to laser short-pulse heating: influence of laser pulse intensity on temperature distribution. Opt. Laser Technol. 44(1), 43–50 (2012)

    Article  ADS  Google Scholar 

  7. J.M. Hayes, M. Kuball, Y. Shi, J.H. Edgar, Raman analysis of single crystalline bulk aluminum nitride: temperature dependence of the phonon frequencies. Mater. Res. Soc. Symp. Proc. 639, G6.38.1–G6.38.6 (2001)

    Google Scholar 

  8. L.-C. Liu, M.-J. Huang, Thermal conductivity modeling of micro- and nanoporous silicon. Int. J. Therm. Sci. 49(9), 1547–1554 (2010)

    Article  Google Scholar 

  9. N. Donmezer, S. Graham, A multiscale thermal modeling approach for ballistic and diffusive heat transport in two dimensional domains. Int. J. Therm. Sci. 76, 235–244 (2014)

    Article  Google Scholar 

  10. V.A. Yakovlev, N.N. Novikova, E.A. Vinogradov, S.S. Ng, Z. Hassan, H.A. Hassan, Strong coupling of sapphire surface polariton with aluminum nitride film phonon. Phys. Lett. A 373(27–28), 2382–2384 (2009)

    Article  ADS  Google Scholar 

  11. I.J. Maasilta, L.J. Taskinen, J.T. Karvonen, Electron–phonon interaction in a thin Al–Mn film. Nucl. Instrum. Methods Phys. Res. Sect. A 559(2), 639–641 (2006)

    Article  ADS  Google Scholar 

  12. Y.-Q. Li, Z.-R. Sun, Y.-F. Wang, Z.-G. Wang, Study on coherent phonons in aluminum film by interferometric probing technique. Acta Photon. Sin. 37(2), 256–259 (2008)

    Google Scholar 

  13. B.S. Yilbas, S. Bin Mansoor, Energy transport in silicon–aluminum composite thin film during laser short-pulse irradiation. Opt. Quant. Electron. 44(10–11), 437–457 (2012)

    Article  Google Scholar 

  14. S. Bin Mansoor, B.S. Yilbas, Heat transfer across silicon–aluminum–silicon thin films due to ultra-short laser pulse irradiation. J. Enhanc. Heat Transf. 19(3), 259–270 (2012)

    Article  Google Scholar 

  15. B.S. Yilbas, S. Bin Mansoor, Lattice phonon and electron temperatures in silicon–aluminum thin films pair: comparison of Boltzmann equation and modified two-equation model. Transp. Theory Stat. Phys. 42(1), 21–39 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. B.S. Yilbas, S. Bin Mansoor, Phonon and electron transport in aluminum thin film: influence of film thickness on electron and lattice temperatures. Phys. B 407(24), 4643–4648 (2012)

    Article  ADS  Google Scholar 

  17. A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transf. 115, 7–16 (1993)

    Article  Google Scholar 

  18. R. Stedman, G. Nilsson, Dispersion relation for phonon in aluminum at 80 and 300 K. Phys. Rev. 145(2), 492–500 (1966)

    Article  ADS  Google Scholar 

  19. A.C. Bouley, N.S. Mohan, D.H. Damon, The lattice thermal conductivity of copper and aluminum alloys at low temperatures. Therm. Conduct. 14, 81–88 (1976)

    Article  Google Scholar 

  20. B.S. Yilbas, S. Bin Mansoor, Phonon transport in thin film: ballistic phonon contribution to energy transport. Numer. Heat Transf. Part A 64(10), 800–819 (2013)

    Article  Google Scholar 

  21. B.S. Yilbas, S. Bin Mansoor, Frequency dependent phonon transport in two-dimensional silicon and diamond thin films. Mod. Phys. Lett. B 26. doi:10.1142/S0217984912501047 (2012)

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through Project No. RG1301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yilbas.

Appendix: Diffusive limit consideration

Appendix: Diffusive limit consideration

In the diffusion limit, when the Knudsen number Kn = Λ/L → 0 (where Λ is the mean free path and L is the film thickness), Eqs. (3) and (4) should reduce to the two-equation model. This is can be demonstrated as follows. Multiplying Eqs. (3) and (4) throughout by 2πμdμ and then integrating from −1 to 1, it yields,

$$ \begin{aligned} \frac{2\pi }{{v_{\text{p}} }}\int_{ - 1}^{1} {\mu \frac{{\partial I_{\text{p}} }}{\partial t}\,{\text{d}}\mu } + 2\pi \int_{ - 1}^{1} {\mu^{2} \frac{{\partial I_{\text{p}} }}{\partial x}{\text{d}}\mu } & = \frac{{2\pi \left( {\int_{ - 1}^{1} {\mu \,{\text{d}}\mu } } \right)\left( {\tfrac{1}{2}\int_{ - 1}^{1} {I_{\text{p}} {\text{d}}\mu } } \right) - 2\pi \int_{ - 1}^{1} {\mu I_{\text{p}} \,{\text{d}}\mu } }}{{\Lambda _{\text{p}} }} \\ & \quad - 2\pi \frac{G}{4\pi }\left( {T_{\text{p}} - T_{\text{e}} } \right)\left( {\int_{ - 1}^{1} {\mu \,{\text{d}}\mu } } \right) \\ \end{aligned} $$
(35)

and

$$ \begin{aligned} \frac{2\pi }{{v_{\text{e}} }}\int_{ - 1}^{1} {\mu \frac{{\partial I_{\text{e}} }}{\partial t}{\text{d}}\mu } + 2\pi \int_{ - 1}^{1} {\mu^{2} \frac{{\partial I_{\text{e}} }}{\partial x}\,{\text{d}}\mu } & = \frac{{2\pi \left( {\int_{ - 1}^{1} {\mu \,{\text{d}}\mu } } \right)\left( {\tfrac{1}{2}\int_{ - 1}^{1} {I_{\text{e}} \,{\text{d}}\mu } } \right) - 2\pi \int_{ - 1}^{1} {\mu I_{\text{e}} \,{\text{d}}\mu } }}{{\Lambda _{\text{e}} }} \\ & \quad - 2\pi \frac{G}{4\pi }\left( {T_{\text{p}} - T_{\text{e}} } \right)\left( {\int_{ - 1}^{1} {\mu \,{\text{d}}\mu } } \right) \\ \end{aligned} $$
(36)

However, the second term on the left-hand side needs some elaboration. In the diffusive limit, the behavior of I e,p(xμt) is mainly linear in μ. This means that we may neglect the terms of order 2 or higher in the Taylor series expansion of I e,p(xμt) in μ:

$$ \begin{aligned} I_{\text{e,p}} \left( {x,\mu ,t} \right) & = I_{\text{e,p}} \left( {x,0,t} \right) + \mu \left. {\frac{{\partial I_{\text{e,p}} }}{\partial \mu }} \right|_{\mu = 0} + O\left( \mu \right) \\ & \approx I_{\text{e,p}}^{o} \left( {x,t} \right) + \mu \left. {\frac{{\partial I_{\text{e,p}} }}{\partial \mu }} \right|_{\mu = 0} \\ \end{aligned} $$
(37)

This is because, \( I_{\text{e,p}}^{o} \left( {x,t} \right) = \tfrac{1}{2}\int_{ - 1}^{1} {I_{\text{e,p}} \left( {x,\mu ,t} \right){\text{d}}\mu } \approx I_{\text{e,p}} \left( {x,0,t} \right) + \tfrac{1}{2}\left( {\int_{ - 1}^{1} {\mu \,{\text{d}}\mu } } \right)\left. {\frac{{\partial I_{\text{e,p}} }}{\partial \mu }} \right|_{\mu = 0} = I_{\text{e,p}} \left( {x,0,t} \right) \)

Then,

$$ \begin{aligned} 2\pi \int_{ - 1}^{1} {\mu^{2} \frac{{\partial I_{\text{e,p}} }}{\partial x}{\text{d}}\mu } & = 2\pi \int_{ - 1}^{1} {\mu^{2} \frac{\partial }{\partial x}\left( {I_{\text{e,p}}^{o} \left( {x,t} \right) + \mu \left. {\frac{{\partial I_{\text{e,p}} }}{\partial \mu }} \right|_{\mu = 0} } \right){\text{d}}\mu } \\ & = 2\pi \int_{ - 1}^{1} {\mu^{2} \frac{{\partial I_{\text{e,p}}^{o} \left( {x,t} \right)}}{\partial x}{\text{d}}\mu } + 2\pi \frac{\partial }{\partial x}\left( {\left. {\frac{{\partial I_{\text{e,p}} }}{\partial \mu }} \right|_{\mu = 0} } \right)\,\int_{ - 1}^{1} {\mu^{3} {\text{d}}\mu } \\ & = 2\pi \frac{2}{3}\frac{{\partial I_{\text{e,p}}^{o} \left( {x,t} \right)}}{\partial x} \\ \end{aligned} $$
(38)

Since, \( \frac{{C_{\text{e,p}} v_{\text{e,p}} T_{\text{e,p}} }}{4\pi } = I_{\text{e,p}}^{o} \left( {x,t} \right) = \tfrac{1}{2}\int_{ - 1}^{1} {I_{\text{e,p}} \left( {x,\mu ,t} \right){\kern 1pt} {\text{d}}\mu } \), so that finally:

$$ 2\pi \int_{ - 1}^{1} {\mu^{2} \frac{{\partial I_{\text{e,p}} }}{\partial x}{\text{d}}\mu } = 2\pi \frac{2}{3}\frac{{{\text{d}}I_{\text{e,p}}^{o} }}{{{\text{d}}T_{\text{e,p}} }}\frac{{\partial T_{\text{e,p}} }}{\partial x} $$

Equations (35) and (36) are now simplified to:

$$ \frac{1}{{v_{\text{p}} }}\frac{{\partial q_{\text{p}}^{{\prime \prime }} }}{\partial t} + \frac{4\pi }{3}\frac{{{\text{d}}I_{\text{p}}^{o} }}{{{\text{d}}T_{\text{p}} }}\frac{{\partial T_{\text{p}} }}{\partial x} = \frac{{0 - q_{\text{p}}^{{\prime \prime }} }}{{\Lambda _{\text{p}} }} - 0 $$
(39)

and

$$ \frac{1}{{v_{\text{e}} }}\frac{{\partial q_{\text{e}}^{{\prime \prime }} }}{\partial t} + \frac{4\pi }{3}\frac{{{\text{d}}I_{\text{e}}^{o} }}{{{\text{d}}T_{\text{e}} }}\frac{{\partial T_{\text{e}} }}{\partial x} = \frac{{0 - q_{\text{e}}^{{\prime \prime }} }}{{\Lambda _{\text{e}} }} - 0 + 0 $$
(40)

or,

$$ \frac{{\Lambda _{\text{p}} }}{{v_{\text{p}} }}\frac{{\partial q_{\text{p}}^{{\prime \prime }} }}{\partial t} + q_{\text{p}}^{{\prime \prime }} = - \frac{{C_{\text{p}} v_{\text{p}}\Lambda _{\text{p}} }}{3}\frac{{\partial T_{\text{p}} }}{\partial x} $$
(41)

and

$$ \frac{{\Lambda _{\text{e}} }}{{v_{\text{e}} }}\frac{{\partial q_{\text{e}}^{{\prime \prime }} }}{\partial t} + q_{\text{e}}^{{\prime \prime }} = - \frac{{C_{\text{e}} v_{\text{e}}\Lambda _{\text{e}} }}{3}\frac{{\partial T_{\text{e}} }}{\partial x} $$
(42)

The kinetic theory formula for the thermal conductivity is given as,

$$ k_{\text{p}} = \frac{{C_{\text{p}} v_{\text{p}}\Lambda _{\text{p}} }}{3},\quad k_{\text{e}} = \frac{{C_{\text{e}} v_{\text{e}}\Lambda _{\text{e}} }}{3} $$

Hence, Eqs. (40) and (41) can be transformed into,

$$ \frac{{\Lambda _{\text{p}} }}{{v_{\text{p}} }}\frac{{\partial q_{\text{p}}^{{\prime \prime }} }}{\partial t} + q_{\text{p}}^{{\prime \prime }} = - k_{\text{p}} \frac{{\partial T_{\text{p}} }}{\partial x} $$
(43)

and

$$ \frac{{\Lambda _{\text{e}} }}{{v_{\text{e}} }}\frac{{\partial q_{\text{e}}^{{\prime \prime }} }}{\partial t} + q_{\text{p}}^{{\prime \prime }} = - k_{e} \frac{{\partial T_{\text{e}} }}{\partial x} $$
(44)

To eliminate \( q_{\text{p}}^{\prime \prime } \) and \( q_{\text{e}}^{\prime \prime } \) between Eqs. (41) and (43) as well as Eqs. (44), one can proceed as follows. After differentiating Eqs. (42) and (44) once with respect to x, it gives:

$$ \frac{{\Lambda _{\text{p}} }}{{v_{\text{p}} }}\frac{\partial }{\partial t}\left( {\frac{{\partial q_{\text{p}}^{{\prime \prime }} }}{\partial x}} \right) + \frac{{\partial q_{\text{p}}^{{\prime \prime }} }}{\partial x} = - k_{\text{p}} \frac{{\partial^{2} T_{\text{p}} }}{{\partial x^{2} }} $$
(45)

and

$$ \frac{{\Lambda _{\text{e}} }}{{v_{\text{e}} }}\frac{\partial }{\partial t}\left( {\frac{{\partial q_{\text{e}}^{{\prime \prime }} }}{\partial x}} \right) + \frac{{\partial q_{\text{e}}^{{\prime \prime }} }}{\partial x} = - k_{\text{e}} \frac{{\partial^{2} T_{\text{e}} }}{{\partial x^{2} }} $$
(46)

Now, substitute for \( \partial q_{\text{p}}^{\prime \prime } /\partial x \) and \( \partial q_{\text{e}}^{\prime \prime } /\partial x \) from Eqs. (41) and (42) into Eqs. (45) and (46), respectively, and simplify to obtain:

$$ \frac{{\Lambda _{\text{p}} }}{{v_{\text{p}} }}\frac{\partial }{\partial t}\left[ {C_{\text{p}} \frac{{\partial T_{\text{p}} }}{\partial t} + G\left( {T_{\text{p}} - T_{\text{e}} } \right)} \right] + C_{\text{p}} \frac{{\partial T_{\text{p}} }}{\partial t} = k_{\text{p}} \frac{{\partial^{2} T_{\text{p}} }}{{\partial x^{2} }} - G\left( {T_{\text{p}} - T_{\text{e}} } \right) $$
(47)

and

$$ \frac{{\Lambda _{\text{e}} }}{{v_{\text{e}} }}\frac{\partial }{\partial t}\left[ {C_{\text{e}} \frac{{\partial T_{\text{e}} }}{\partial t} + G\left( {T_{\text{e}} - T_{\text{p}} } \right)} \right] + C_{\text{e}} \frac{{\partial T_{\text{e}} }}{\partial t} = k_{\text{e}} \frac{{\partial^{2} T_{\text{e}} }}{{\partial x^{2} }} - G\left( {T_{\text{e}} - T_{\text{p}} } \right) $$
(48)

Noting that τ p = Λp/v p and τ e = Λe/v e are the relaxation times of the phonons and electrons, respectively, the above equations may be written as,

$$ \tau_{\text{p}} \frac{\partial }{\partial t}\left[ {C_{\text{p}} \frac{{\partial T_{\text{p}} }}{\partial t} + G\left( {T_{\text{p}} - T_{\text{e}} } \right)} \right] + C_{\text{p}} \frac{{\partial T_{\text{p}} }}{\partial t} = k_{\text{p}} \frac{{\partial^{2} T_{\text{p}} }}{{\partial x^{2} }} - G\left( {T_{\text{p}} - T_{\text{e}} } \right) $$
(49)

and

$$ \tau_{\text{e}} \frac{\partial }{\partial t}\left[ {C_{\text{e}} \frac{{\partial T_{\text{e}} }}{\partial t} + G\left( {T_{\text{e}} - T_{\text{p}} } \right)} \right] + C_{\text{e}} \frac{{\partial T_{\text{e}} }}{\partial t} = k_{\text{e}} \frac{{\partial^{2} T_{\text{e}} }}{{\partial x^{2} }} - G\left( {T_{\text{e}} - T_{\text{p}} } \right) $$
(50)

or,

$$ \tau_{\text{p}} C_{\text{p}} \frac{{\partial^{2} T_{\text{p}} }}{{\partial t^{2} }} + \left( {C_{\text{p}} + \tau_{\text{p}} G} \right)\frac{{\partial T_{\text{p}} }}{\partial t} - \tau_{\text{p}} G\frac{{\partial T_{\text{e}} }}{\partial t} = k_{\text{p}} \frac{{\partial^{2} T_{\text{p}} }}{{\partial x^{2} }} - G\left( {T_{\text{p}} - T_{\text{e}} } \right) $$
(51)

and

$$ \tau_{\text{e}} C_{\text{e}} \frac{{\partial^{2} T_{\text{e}} }}{{\partial t^{2} }} + \left( {C_{\text{e}} + \tau_{\text{e}} G} \right)\frac{{\partial T_{\text{e}} }}{\partial t} - \tau_{\text{e}} G\frac{{\partial T_{\text{p}} }}{\partial t} = k_{\text{e}} \frac{{\partial^{2} T_{\text{e}} }}{{\partial x^{2} }} - G\left( {T_{\text{e}} - T_{\text{p}} } \right) $$
(52)

It should be noted that when the overall time scale of the heat transfer process is much larger than the relaxation time, Eqs. (49) and (50) or Eqs. (51) and (52) can be further simplified to,

$$ C_{\text{p}} \frac{{\partial T_{\text{p}} }}{\partial t} = k_{\text{p}} \frac{{\partial^{2} T_{\text{p}} }}{{\partial x^{2} }} - G\left( {T_{\text{p}} - T_{\text{e}} } \right) $$
(53)

and

$$ C_{\text{e}} \frac{{\partial T_{\text{e}} }}{\partial t} = k_{\text{e}} \frac{{\partial^{2} T_{\text{e}} }}{{\partial x^{2} }} - G\left( {T_{\text{e}} - T_{\text{p}} } \right) $$
(54)

Equations (53) and (54) constitute the familiar of two-equation model [21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Yilbas, B.S. Effect of temperature oscillation on thermal characteristics of an aluminum thin film. Appl. Phys. A 117, 2143–2158 (2014). https://doi.org/10.1007/s00339-014-8635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8635-5

Keywords

Navigation