Skip to main content

Advertisement

Log in

Estimation of mechanical properties of nanomaterials using artificial intelligence methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. L. Deng, S.J. Eichhorn, C.C. Kao, R.J. Young, ACS Appl. Mater. Interfaces 3, 433–440 (2011)

    Article  Google Scholar 

  3. Y. Gao, Y. Bando, Z. Liu, D. Golberg, H. Nakanishi, Appl. Phys. Lett. 83, 2913–2915 (2003)

    Article  ADS  Google Scholar 

  4. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Phys. Rev. B Condens. Matter Mater. Phys. 58, 14013–14019 (1998)

    Article  ADS  Google Scholar 

  5. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678–680 (1996)

    Article  ADS  Google Scholar 

  6. K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, S.A. Meguid, Phys. Rev. B 69, 115429 (2004)

    Article  ADS  Google Scholar 

  7. V. Vijayaraghavan, C.H. Wong, Comput. Mater. Sci. 79, 519–526 (2013)

    Article  Google Scholar 

  8. C.H. Wong, Comput. Mater. Sci. 49, 143–147 (2010)

    Article  ADS  Google Scholar 

  9. C.H. Wong, V. Vijayaraghavan, J. Nanomater. 2012, 490872 (2012). doi:10.1155/2012/490872

  10. Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Nanotechnology 20, 215702 (2009)

    Article  ADS  Google Scholar 

  11. Y.Y. Zhang, C.M. Wang, Y. Xiang, Carbon 48, 4100–4108 (2010)

    Article  Google Scholar 

  12. S. Iijima, T. Ichihashi, Nature 363, 603–605 (1993)

    Article  ADS  Google Scholar 

  13. B. Xu, Z. Shen, X. Ni, J. Wang, J. Guan, J. Lu, Appl. Phys. Lett. 85, 6161–6163 (2004)

    Article  ADS  Google Scholar 

  14. G.M. Sacha, F.B. Rodríguez, P. Varona, Nanotechnology 20 (2009). doi:10.1088/0957-4484/20/8/085702

  15. N. Asproulis, D. Drikakis, J. Comput. Theor. Nanosci. 6, 514–518 (2009)

    Article  Google Scholar 

  16. J. Yu, B. Wu, C. He, J. Test. Eval. 36, 103–108 (2008)

    Google Scholar 

  17. J. Yu, B. Wu, NDT E Int. 42, 452–458 (2009)

    Article  MathSciNet  Google Scholar 

  18. E. Castellano-Hernández, F.B. Rodríguez, E. Serrano, P. Varona, G.M. Sacha, Nanoscale Res. Lett. 7, 1–12 (2012)

    Article  Google Scholar 

  19. M.A. Al-Khedher, C. Pezeshki, J.L. McHale, F.J. Knorr, Nanotechnology 18 (2007). doi:10.1088/0957-4484/18/35/355703

  20. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783–802 (2002)

    Article  ADS  Google Scholar 

  21. W.G. Hoover, Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  22. S. Nose, J. Chem. Phys. 81, 511–519 (1984)

    ADS  Google Scholar 

  23. L. Verlet, Phys. Rev. 159, 98–103 (1967)

    Article  ADS  Google Scholar 

  24. J.R. Koza, Genetic programming: on the programming of computers by means of natural selection (MIT Press, Cambridge, 1992)

    MATH  Google Scholar 

  25. D.P. Searson, D.E. Leahy, M.J. Willis, Proc. Int. Multiconf. Eng. Computer Sci. 1, 77–80 (2010)

    Google Scholar 

  26. B. Allen, V. Nistor, E. Dutson, G. Carman, C. Lewis, P. Faloutsos, Surg. Endosc. Other Interv. Tech. 24, 170–178 (2010)

    Article  Google Scholar 

  27. A. Mammone, M. Turchi, N. Cristianini, Wiley Interdiscip. Rev. Comput. Stat. 1, 283–289 (2009)

    Article  Google Scholar 

  28. A. Garg, Y. Bhalerao, K. Tai, Int. J. Model. Identif. Control 20, 121–129 (2013)

    Article  Google Scholar 

  29. A. Garg, V. Vijayaraghavan, S.S. Mahapatra, K. Tai, C.H. Wong, Expert Syst. Appl. 41, 1389–1399 (2014)

    Article  Google Scholar 

  30. K. Pelckmans, J.A. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor, J. Vandewalle, Tutorial (KULeuven-ESAT, Leuven, 2002)

    Google Scholar 

  31. U. Çaydaş, S. Ekici, J. Intell. Manuf. 23, 639–650 (2012)

    Article  Google Scholar 

  32. V. Cherkassky, Y. Ma, Neural Comput. 15, 1691–1714 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayaraghavan, V., Garg, A., Wong, C.H. et al. Estimation of mechanical properties of nanomaterials using artificial intelligence methods. Appl. Phys. A 116, 1099–1107 (2014). https://doi.org/10.1007/s00339-013-8192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8192-3

Keywords

Navigation