Skip to main content
Log in

Coupled nonlinear size-dependent behaviour of microbeams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nonlinear resonant behaviour of a microbeam, subject to a distributed harmonic excitation force, is investigated numerically taking into account the longitudinal as well as the transverse displacement. Hamilton’s principle is employed to derive the coupled longitudinal-transverse nonlinear partial differential equations of motion based on the modified couple stress theory. The discretized form of the equations of motion is obtained by applying the Galerkin technique. The pseudo-arclength continuation technique is then employed to solve the discretized equations of motion numerically. Different types of bifurcations as well as the stability of solution branches are determined. The numerical results are presented in the form of frequency-response and force-response curves for different sets of parameters. The effect of taking into account the longitudinal displacement is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Nix, Metall. Trans. A, Phys. Metall. Mater. Sci. 20, 2217–2245 (1989)

    Article  ADS  Google Scholar 

  2. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  3. W.J. Poole, M.F. Ashby, N.A. Fleck, Scr. Mater. 34(4), 559–564 (1996)

    Article  Google Scholar 

  4. D.C.C. Lam, A.C.M. Chong, J. Mater. Res. 14, 3784–3788 (1999)

    Article  ADS  Google Scholar 

  5. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  6. I. Chasiotis, W.G. Knauss, J. Mech. Phys. Solids 51, 1551–1572 (2003)

    Article  ADS  Google Scholar 

  7. A.W. McFarland, J.S. Colton, J. Micromech. Microeng. 15, 1060 (2005)

    Article  ADS  Google Scholar 

  8. M.H. Ghayesh, J. Sound Vib. 331, 5107–5124 (2012)

    Article  ADS  Google Scholar 

  9. M.H. Ghayesh, M. Amabili, M.P. Paidoussis, Nonlinear Dyn. 70, 335–354 (2012)

    Article  MathSciNet  Google Scholar 

  10. M.H. Ghayesh, M. Amabili, H. Farokhi, Int. J. Non-Linear Mech. 51, 54–74 (2013)

    Article  ADS  Google Scholar 

  11. M.H. Ghayesh, M. Amabili, H. Farokhi, Chaos Solitons Fractals 52, 8–29 (2013)

    Article  ADS  Google Scholar 

  12. S. Kong, S. Zhou, Z. Nie, K. Wang, Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  13. M. Asghari, M. Kahrobaiyan, M. Rahaeifard, M. Ahmadian, Arch. Appl. Mech. 81, 863–874 (2011)

    Article  ADS  Google Scholar 

  14. M. Asghari, M.T. Ahmadian, M.H. Kahrobaiyan, M. Rahaeifard, Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  15. H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Wang, J. Zhao, S. Zhou, Eur. J. Mech. A, Solids 29, 591–599 (2010)

    Article  ADS  Google Scholar 

  17. L.-L. Ke, Y.-S. Wang, Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  18. R. Ansari, R. Gholami, S. Sahmani, Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  19. M. Şimşek, Int. J. Eng. Sci. 48, 1721–1732 (2010)

    Article  MATH  Google Scholar 

  20. B. Akgöz, Ö. Civalek, Arch. Appl. Mech. 82, 423–443 (2012)

    Article  ADS  Google Scholar 

  21. B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  Google Scholar 

  22. A. Nateghi, M. Salamat-talab, J. Rezapour, B. Daneshian, Appl. Math. Model. 36, 4971–4987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Asghari, M. Kahrobaiyan, M. Nikfar, M. Ahmadian, Acta Mech. 223, 1233–1249 (2012)

    Article  MathSciNet  Google Scholar 

  24. H. Moeenfard, M. Mojahedi, M. Ahmadian, J. Mech. Sci. Technol. 25, 557–565 (2011)

    Article  Google Scholar 

  25. L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  26. S. Ramezani, Int. J. Non-Linear Mech. 47, 863–873 (2012)

    Article  ADS  Google Scholar 

  27. M.H. Ghayesh, M. Amabili, H. Farokhi, Int. J. Eng. Sci. 63, 52–60 (2013)

    Article  MathSciNet  Google Scholar 

  28. M.H. Ghayesh, H. Farokhi, M. Amabili, Compos. Part B, Eng. 50, 318–324 (2013)

    Article  Google Scholar 

  29. H. Farokhi, M.H. Ghayesh, M. Amabili, Int. J. Eng. Sci. 68, 11–23 (2013)

    Article  MathSciNet  Google Scholar 

  30. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  31. J.N. Reddy, J. Kim, Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  32. E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Concordia University, Montreal, Canada (1998)

  33. C. Maneschy, Y. Miyano, M. Shimbo, T. Woo, Exp. Mech. 26, 306–312 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghayesh, M.H., Farokhi, H. & Amabili, M. Coupled nonlinear size-dependent behaviour of microbeams. Appl. Phys. A 112, 329–338 (2013). https://doi.org/10.1007/s00339-013-7787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7787-z

Keywords

Navigation