Skip to main content
Log in

Preisach modelling of nonlinear response in electrically biased lead zirconate titanate-based piezoceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The alteration of the high-field electrical permittivity (nonlinear response) of PZT-based ceramics when an electrical bias field is applied is reported in this work. Large differences are observed between soft and hard PZT behaviours. While in soft PZT a bias field does not modify the nonlinear behaviour, a notable dependence is verified in hard PZT. The Preisach model is satisfactorily used to describe experimental results. A distribution function containing the first terms of the Maclaurin development series of a function composed by two Gaussian-like functions of different amplitudes is proposed. The model gives a satisfactory explanation for the fact that the permittivity depends not only on the amplitude of the applied electric field, but also on the bias field, both for soft and hard ceramics and for poled or unpoled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  2. Q.M. Zhang, W.Y. Pan, S.J. Jang, L.E. Cross, J. Appl. Phys. 64, 6445 (1988)

    Article  ADS  Google Scholar 

  3. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)

    Article  ADS  Google Scholar 

  4. B. Lewis, Proc. Phys. Soc. Lond. 73, 17 (1959)

    Article  ADS  Google Scholar 

  5. D. Berlincourt, H.H. Krüger, J. Appl. Phys. 30, 1804 (1959)

    Article  ADS  Google Scholar 

  6. J.E. Garcia, R. Perez, D.A. Ochoa, A. Albareda, M.H. Lente, J.A. Eiras, J. Appl. Phys. 103, 054108 (2008)

    Article  ADS  Google Scholar 

  7. J.C. Burfoot, G.W. Taylor, Polar Dielectrics and Their Applications (University of California Press, Berkeley, 1979)

    Google Scholar 

  8. S. Takahashi, Ferroelectrics 41, 277 (1982)

    Article  Google Scholar 

  9. W.L. Warren, G.E. Pike, K. Vanheusden, D. Dimos, B.A. Tuttle, J. Robertson, J. Appl. Phys. 79, 9250 (1996)

    Article  ADS  Google Scholar 

  10. M.H. Lente, J.A. Eiras, J. Appl. Phys. 94, 2112 (2002)

    Article  ADS  Google Scholar 

  11. D.A. Ochoa, J.E. García, R. Pérez, A. Albareda, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2732 (2008)

    Article  Google Scholar 

  12. P.M. Chaplya, G.P. Carman, J. Appl. Phys. 92, 1504 (2002)

    Article  ADS  Google Scholar 

  13. A. Pramanick, A.D. Prewitt, M.A. Cottrell, W. Lee, A.J. Studer, K. An, C.R. Hubbard, J.L. Jones, Appl. Phys. A 99, 557 (2010)

    Article  ADS  Google Scholar 

  14. M. Marsilius, T. Granzow, J.L. Jones, J. Mater. Res. 26, 1126 (2011)

    Article  ADS  Google Scholar 

  15. G. Robert, D. Damjanovic, N. Setter, Appl. Phys. Lett. 77, 4413 (2000)

    Article  ADS  Google Scholar 

  16. S.A. Turik, L.A. Reznitchenko, A.N. Rybjanets, S.I. Dudkina, A.V. Turik, A.A. Yesis, J. Appl. Phys. 97, 64102 (2005)

    Article  Google Scholar 

  17. G. Robert, D. Damjanovic, N. Setter, A.V. Turik, J. Appl. Phys. 89, 5067 (2001)

    Article  ADS  Google Scholar 

  18. G. Robert, D. Damjanovic, N. Setter, J. Appl. Phys. 90, 2459 (2001)

    Article  ADS  Google Scholar 

  19. G. Bertotti, I. Mayergoyz, The Science of Hysteresis, vol. 3 (Elsevier, Oxford, 2006)

    Google Scholar 

  20. H. Frohlich, Theory of Dielectrics (Clarendon, Oxford, 1958)

    Google Scholar 

  21. A.V. Turik, Sov. Phys., Solid State 5, 885 (1963)

    Google Scholar 

  22. D.V. Taylor, D. Damjanovic, J. Appl. Phys. 82, 1973 (1997)

    Article  ADS  Google Scholar 

  23. D.A. Hall, J. Mater. Sci. 36, 4575 (2001)

    Article  ADS  Google Scholar 

  24. A. Sutor, S.J. Rupitsch, R. Lerch, Appl. Phys. A 100, 425 (2010)

    Article  ADS  Google Scholar 

  25. F. Wolf, A. Sutor, S.J. Rupitsch, R. Lerch, Sens. Actuators A 172, 245 (2011)

    Article  Google Scholar 

  26. F. Wolf, A. Sutor, S.J. Rupitsch, R. Lerch, Sens. Actuators A 186, 223 (2012)

    Article  Google Scholar 

  27. S.J. Rupitsch, F. Wolf, A. Sutor, R. Lerch, Acta Mech. 223, 1809 (2012)

    Article  Google Scholar 

  28. J.E. Garcia, D.A. Ochoa, V. Gomis, J.A. Eiras, R. Perez, J. Appl. Phys. 112, 014113 (2012)

    Article  ADS  Google Scholar 

  29. J.E. Garcia, R. Perez, A. Albareda, J. Phys. D, Appl. Phys. 34, 3279 (2001)

    Article  ADS  Google Scholar 

  30. J.E. Garcia, R. Perez, A. Albareda, J. Phys. Condens. Matter 17, 7143 (2005)

    Article  ADS  Google Scholar 

  31. W.L. Warren, D. Dimos, G.E. Pike, K. Vanheusden, R. Armes, Appl. Phys. Lett. 67, 1689 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by project MAT2010-21088-C03-02 of the Spanish Government. The authors wish to thank Prof. Jose A. Eiras, at the Universidade Federal de São Carlos, Brazil, for providing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa, D.A., Pérez, R. & García, J.E. Preisach modelling of nonlinear response in electrically biased lead zirconate titanate-based piezoceramics. Appl. Phys. A 112, 1081–1088 (2013). https://doi.org/10.1007/s00339-012-7492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7492-3

Keywords

Navigation