Skip to main content
Log in

Impedance spectroscopy of Gd-doped BiFeO3 multiferroics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The polycrystalline Bi1−x Gd x FeO3 (BGFO) (x=0.0, 0.05, 0.10, 0.15, 0.20) materials were synthesized by a solid-state reaction (mixed oxide) technique. Preliminary X-ray structural analysis of the compounds confirmed the formation of single-phase polycrystalline samples. Room temperature scanning electron micrographs of the materials revealed the size, type and distribution of grains on the surface of samples. Studies of impedance, electrical modulus and electric conductivity of the materials in a wide frequency (10–1000 kHz) and temperature (30–500 C) range using a complex impedance spectroscopy technique have provided considerable vital information on contribution of grains, grain boundary and interface in these parameters. A strong correlation between these electrical parameters and microstructures (bulk, grain boundary, nature of charge carrier, etc.) of the materials was established. The frequency dependence of electric modulus and impedance of the material shows the presence of non-Debye type of relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5, 823–829 (2006)

    Article  ADS  Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B 104 (2000)

  3. S. Karimi, I.M. Reaney, Y. Han, J. Mater. Sci. 44, 5102–5112 (2009)

    Article  ADS  Google Scholar 

  4. J.L. Rehspringer, J. Bursik, D. Niznansky, A. Klarikova, J. Magn. Magn. Mater. 211, 291–295 (2000)

    Article  ADS  Google Scholar 

  5. A.J. Moulsen, J.M. Herbert, Electroceramics (Chapman and Hall, London, 1990), p.390

    Google Scholar 

  6. J.A. Munevar Cagigas, D. Sanchez Candela, E. Baggio-Saitovitch, J. Phys. Conf. Ser. 200, 012134 (2010)

    Article  ADS  Google Scholar 

  7. A. Lahmar, S. Habouti, M. Dietze, C.-H. Solterbeck, M. Es-Souni, Appl. Phys. Lett. 94, 012903 (2009)

    Article  ADS  Google Scholar 

  8. E. Wu, POWDMULT: An interactive powder diffraction data interpretation and indexing program version 2.1. School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, Australia

  9. G.S. Lotey, N.K. Verma, J. Nanopart. Res. 14(3), 742 (2012)

    Article  Google Scholar 

  10. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, J. Appl. Phys. 101, 034104-7 (2007)

    ADS  Google Scholar 

  11. J. Plocharski, W. Wieczoreck, Solid State Ion. 28–30, 979–982 (1982)

    Google Scholar 

  12. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  13. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  ADS  Google Scholar 

  14. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Article  Google Scholar 

  15. Z. Lu, J.P. Bonnet, J. Ravez, J.M. Reau, P. Hagenmuller, J. Phys. Chem. Solids 53(1), 1–9 (1992)

    Article  Google Scholar 

  16. B. Yemu, ZSimpWin, Version 2.00 (Echem Software, Ann Arbor, 1999)

    Google Scholar 

  17. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  18. J.R. Macdonald, Solid State Ion. 13, 147 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  19. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65 (1997)

    Article  Google Scholar 

  20. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Khatiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  ADS  Google Scholar 

  21. C. Karthik, K.B.R. Verma, J. Phys. Chem. Solids 67, 2437 (2006)

    Article  ADS  Google Scholar 

  22. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)

    Article  Google Scholar 

  23. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992)

    Article  ADS  Google Scholar 

  24. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Khatiyar, Phys. Status Solidi (b) 244, 2254 (2007)

    Article  ADS  Google Scholar 

  25. S.K. Patri, R.N.P. Choudhary, J. Mater. Sci., Mater. Electron. 19, 1240–1246 (2008)

    Article  Google Scholar 

  26. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  Google Scholar 

  27. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  ADS  Google Scholar 

  28. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors thank Mrs. S. Behera and Mr. R. Padhee for their help in analysis and calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samita Pattanayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattanayak, S., Parida, B.N., Das, P.R. et al. Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A 112, 387–395 (2013). https://doi.org/10.1007/s00339-012-7412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7412-6

Keywords

Navigation