Skip to main content
Log in

Metallic graded photonic crystals for graded index lens

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have designed a flat graded index lens made from a metallic graded 2D photonic crystal. The gradient of index has been obtained by varying the filling factor of a flat slab of photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. This gradient has been designed in such a way that the flat slab focuses a plane wave. With applications in the microwave range in view, we considered a photonic crystal which consists of copper strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, J.-M. Lourtioz, Graded photonic crystals curve the flow of light: an experimental demonstration by the mirage effect. Appl. Phys. Lett. 92(13), 133501 (2008). doi:10.1063/1.2901684

    Article  ADS  Google Scholar 

  2. K. Aydin, I. Bulu, E. Ozbay, Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett. 90(25), 254102 (2007)

    Article  ADS  Google Scholar 

  3. H. Boutayeb, T. Denidni, K. Mahdjoubi, A. Tarot, A. Sebak, L. Talbi, Analysis and design of a cylindrical EBG-based directive antenna. IEEE Trans. Antennas Propag. 54(1), 211–219 (2006)

    Article  ADS  Google Scholar 

  4. E. Centeno, E. Akmansoy, K. Vynck, D. Cassagne, J.-M. Lourtioz, Light bending and quasi-transparency in metallic graded photonic crystals. Photonics Nanostruct. Fundam. Appl. 8(2), 120–124 (2010)

    Article  ADS  Google Scholar 

  5. E. Centeno, D. Cassagne, Graded photonic crystals. Opt. Lett. 30(17), 2278–2280 (2005)

    Article  ADS  Google Scholar 

  6. S. Chaillou, J. Wiart, W. Tabbara, A subgridding scheme based on mesh nesting for the fdtd method. Microw. Opt. Technol. Lett. 22(3), 211–214 (1999)

    Article  Google Scholar 

  7. A. de Lustrac, F. Gadot, E. Akmansoy, T. Brillat, High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies. Appl. Phys. Lett. 78(26), 4196–4198 (2001)

    Article  ADS  Google Scholar 

  8. F. Gadot, T. Brillat, E. Akmansoy, A. de Lustrac, New type of metallic photonic bandgap material suitable for microwave applications. Electron. Lett. 36(7), 640–641 (2000)

    Article  Google Scholar 

  9. N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, H. Legay, A metallic Fabry–Perot directive antenna. IEEE Trans. Antennas Propag. 54(1), 220–224 (2006)

    Article  ADS  Google Scholar 

  10. P. Ikonen, C. Simovski, S. Tretyakov, Compact directive antennas with a wire-medium artificial lens. Microw. Opt. Technol. Lett. 43(6), 467–469 (2004)

    Article  Google Scholar 

  11. H. Kurt, D.S. Citrin, Graded index photonic crystals. Opt. Express 15(3), 1240–1253 (2007)

    Article  ADS  Google Scholar 

  12. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, The focusing effect of graded index photonic crystals. Appl. Phys. Lett. 93(17), 171108 (2008)

    Article  ADS  Google Scholar 

  13. J. Lourtioz, Photonic Crystals: Toward Nanoscale Photonic Devices (Springer, Berlin, 2005)

    Google Scholar 

  14. J.-M. Lourtioz, A. de Lustrac, Metallic photonic crystals. C. R. Phys. 3(1), 79–88 (2002)

    Article  ADS  Google Scholar 

  15. D.T. Moore, Gradient-index optics: a review. Appl. Opt. 19(7), 1035–1038 (1980)

    Article  ADS  Google Scholar 

  16. M. Notomi, Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696–10705 (2000)

    Article  ADS  Google Scholar 

  17. A.O. Pinchuk, G.C. Schatz, Metamaterials with gradient negative index of refraction. J. Opt. Soc. Am. A 24(10), A39–A44 (2007)

    Article  ADS  Google Scholar 

  18. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. (Artech House, Norwood, 2005)

    Google Scholar 

  19. C. Tan, T. Niemi, C. Peng, M. Pessa, Focusing effect of a graded index photonic crystal lens. Opt. Commun. 284(12), 3140–3143 (2011)

    Article  ADS  Google Scholar 

  20. E. Yablonovitch, Photonic crystals: what’s in the name. Opt. Photonics News mars, 12–13 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Akmansoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaufillet, F., Akmansoy, É. Metallic graded photonic crystals for graded index lens. Appl. Phys. A 109, 1071–1074 (2012). https://doi.org/10.1007/s00339-012-7386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7386-4

Keywords

Navigation