Skip to main content
Log in

Determination of femtosecond ablation thresholds by using laser ablation induced photoacoustics (LAIP)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond laser material processing as micromachining and nanoparticles fabrication require a careful control of the fluences deposited on the samples. In many cases, best results are obtained by using fluences slightly above the Laser Ablation Threshold (LAT), therefore its accurate determination is an important requirement. LAT can be obtained by measuring the intensity of the acoustic signal generated during the ablation process as a function of the laser fluence.

In this work femtosecond laser ablation thresholds of commercially polished stainless steel plates, white high impact polystyrene, frosted glass, antique rag papers and silicon oxynitride thin films were determined by using laser ablation induced photoacoustics (LAIP). Results were compared with similar data previously obtained by using a nanosecond Nd:YAG laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.R. Phipps, Laser Ablation and Its Applications (Springer, New York, N.Y., 2007)

    Book  Google Scholar 

  2. N.B. Dahotre, Laser Fabrication and Machining of Materials (Springer, New York, 2007)

    Google Scholar 

  3. J. Perrière, E. Millon, E. Fogarassy, Recent Advances in Laser Processing of Materials (Elsevier, Amsterdam, 2006)

    Google Scholar 

  4. H. Misawa, S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, Weinheim, 2006)

    Book  Google Scholar 

  5. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Appl. Phys. Lett. 84(22), 4502–4504 (2004)

    Article  ADS  Google Scholar 

  6. F.A. Videla, G.A. Torchia, D.C. Schinca, L.B. Scaffardi, P. Moreno, C. Mendez, L.J. Giovanetti, J.M.R. Lopez, L. Roso, J. Appl. Phys. 107(11) (2010)

  7. F.C. Alvira, F.V. Ramirez Rozzi, G.A. Torchia, L. Roso, G.M. Bilmes, J. Anthropol. Sci. 89, 153–160 (2011)

    Google Scholar 

  8. E.L. Gurevich, R. Hergenroder, Appl. Spectrosc. 61(10), 233A–242A (2007)

    Article  ADS  Google Scholar 

  9. R.E. Russo, X. Mao, S.S. Mao, Anal. Chem. 74(3) (2002)

  10. A.P. Caricato, A. Luches, Appl. Phys. A, Mater. Sci. Process. 105(3), 565–582 (2011)

    Article  ADS  Google Scholar 

  11. M. Cano-Lara, S. Camacho-López, A. Esparza-García, M.A. Camacho-López, Opt. Mater. 33(11), 1648–1653 (2011)

    Article  ADS  Google Scholar 

  12. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21(21), 1729–1731 (1996)

    Article  ADS  Google Scholar 

  13. G.A. Torchia, C. Mendez, I. Arias, L. Roso, J. Piqueras, E. Ruiz, P.L. Pernas, in Proceedings (IEEE Cat. No. 05EX965) (IEEE, New York, 2005), pp. 335–337

    Google Scholar 

  14. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Appl. Surf. Sci. 256(1), 61–66 (2009)

    Article  ADS  Google Scholar 

  15. R. Suriano, A. Kuznetsov, S.M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B.N. Chichkov, M. Levi, S. Turri, Appl. Surf. Sci. 257(14), 6243–6250 (2011)

    Article  ADS  Google Scholar 

  16. A. Mitra, R.K. Thareja, J. Mater. Sci. 34(3), 615–619 (1999)

    Article  ADS  Google Scholar 

  17. J.A. Sell, D.M. Heffelfinger, P. Ventzek, R.M. Gilgenbach, Appl. Phys. Lett. 55(23), 2435–2437 (1989)

    Article  ADS  Google Scholar 

  18. J.A. Sell, D.M. Heffelfinger, P.L.G. Ventzek, R.M. Gilgenbach, J. Appl. Phys. 69(3), 1330–1336 (1991)

    Article  ADS  Google Scholar 

  19. M. Hashida, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862–867 (2002)

    Article  Google Scholar 

  20. S.H. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, J. Chung, D. Poulikakos, Appl. Phys. Lett. 89(14) (2006)

  21. S. Lazare, V. Granier, J. Appl. Phys. 63(6), 2110–2115 (1988)

    Article  ADS  Google Scholar 

  22. Y. Domankevitz, N.S. Nishioka, IEEE J. Quantum Electron. 26(12), 2276–2278 (1990)

    Article  ADS  Google Scholar 

  23. D. Vouagner, C. Beleznai, J.P. Girardeau-Montaut, C. Templier, H. Gonnord, Diam. Relat. Mater. 9(3), 786–791 (2000)

    Article  ADS  Google Scholar 

  24. G.M. Bilmes, D.J.O. Orzi, O.E. Martínez, A. Lencina, Appl. Phys. B, Lasers Opt. 82(4), 643–648 (2006)

    Article  ADS  Google Scholar 

  25. F.C. Alvira, D.J.O. Orzi, G.M. Bilmes, Appl. Spectrosc. 63(2), 192–198 (2009)

    Article  ADS  Google Scholar 

  26. D.J.O. Orzi, G.M. Bilmes, in 9th International Conference on Laser Ablation, Tenerife, Spain (2007)

    Google Scholar 

  27. S. Amoruso, C. Altucci, R. Bruzzese, C. De Lisio, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Appl. Phys. A, Mater. Sci. Process. 79(4–6), 1377–1380 (2004)

    ADS  Google Scholar 

  28. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys. 85(6), 3301–3309 (1999)

    Article  ADS  Google Scholar 

  29. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9(3), 949 (2002)

    Article  ADS  Google Scholar 

  30. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85(9), 6803–6810 (1999)

    Article  ADS  Google Scholar 

  31. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B, Opt. Phys. 13(2), 459–468 (1996)

    Article  ADS  Google Scholar 

  32. L.J. Radziemski, D.A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Gustavo A. Torchia for fruitful discussions and for providing the SiON samples. This work was partially supported by PICT-Start Up #0999-2010 ANPCyT. DJOO and GMB are researchers from CIC-BA. FCA is a postdoctoral fellow at CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. O. Orzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orzi, D.J.O., Alvira, F.C. & Bilmes, G.M. Determination of femtosecond ablation thresholds by using laser ablation induced photoacoustics (LAIP). Appl. Phys. A 110, 735–739 (2013). https://doi.org/10.1007/s00339-012-7230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7230-x

Keywords

Navigation