Skip to main content
Log in

Photoinduced nanocomposites—creation, modification, linear and nonlinear optical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

UV irradiation of materials consisting of a polymer matrix that possesses precursors of noble metals followed by annealing results in creation of metal nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonics applications due to the strong alteration of their optical properties compared to initial nonirradiated materials. We report our results on the synthesis and investigation of two kinds of these materials:

  1. (a)

    Photoinduced Au nanocomposites based on PMMA matrices, including bulk materials prepared by means of the polymerization technique;

  2. (b)

    photoinduced Ag nanocomposites with an organic–inorganic hybrid matrix based on TiO2 gels.

The experimental data on evolution of absorption spectra of these materials due to laser irradiation at different wavelengths are presented. The linear and nonlinear refractive index changes in these materials owing to light-induced nanonstructuring are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Novotny, B. Hetch, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  2. T.C. Chong, M.H. Hong, L.P. Shi, Laser Photonics Rev. 4, 123 (2010)

    Article  ADS  Google Scholar 

  3. N.M. Bityurin, Quantum Electron. 40, 955 (2010)

    Article  ADS  Google Scholar 

  4. S. Lazare, I. Elaboudi, M. Castillejo, A. Sionkowska, Appl. Phys. A, Mater. Sci. Process. 101, 215 (2010)

    Article  ADS  Google Scholar 

  5. A. Selimis, G.J. Tserevelakis, S. Kogou, P. Pouli, G. Filippidis, N. Sapogova, N. Bityurin, C. Fotakis, Opt. Express 20, 3990 (2012)

    Article  ADS  Google Scholar 

  6. A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, N. Bityurin, Appl. Surf. Sci. 248, 181 (2005)

    Article  ADS  Google Scholar 

  7. Y. Nakao, J. Colloid Interface Sci. 171, 386 (1995)

    Article  Google Scholar 

  8. N. Sapogova, N. Bityurin, Appl. Surf. Sci. 255, 9613 (2009)

    Article  ADS  Google Scholar 

  9. C. Dahmen, A.N. Sprafke, H. Dieker, M. Wutting, G. von Plessen, Appl. Phys. Lett. 88, 011923 (2006)

    Article  ADS  Google Scholar 

  10. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130, 1676 (2008)

    Article  Google Scholar 

  11. O. Kameneva, A. Kuznestov, L.A. Smirnova, L. Rozes, C. Sanchez, A. Alexandrov, N. Bityurin, Ph. Marteau, A. Kanaev, J. Math. Chem. 15, 3380 (2005)

    Article  Google Scholar 

  12. A.I. Kuznetsov, O. Kameneva, N. Bityurin, L. Rozes, C. Sanchez, A. Kanaev, Phys. Chem. Chem. Phys. 11, 1248 (2009)

    Article  Google Scholar 

  13. A.V. Afanasiev, A.P. Aleksandrov, N.A. Agareva, N.V. Sapogova, N.M. Bityurin, A.E. Mochalova, L.A. Smirnova, J. Opt. Technol. 78, 537 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was financially supported in part by the Federal Targeted Program “Scientific and scientific-pedagogical personnel of the innovative Russia” under Contracts Nos. 16.740.11.0018, 16.740.11.0656, and P560, by RFBR under Grants Nos. 12-02-01075-a and 11-02-97053-r_povoljie_a, and by the Program of the Presidium of the Russian Academy of Sciences “Fundamentals of nanostructure and nanomaterial technologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bityurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bityurin, N., Alexandrov, A., Afanasiev, A. et al. Photoinduced nanocomposites—creation, modification, linear and nonlinear optical properties. Appl. Phys. A 112, 135–138 (2013). https://doi.org/10.1007/s00339-012-7213-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7213-y

Keywords

Navigation