Skip to main content

Advertisement

Log in

Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, networks of single-walled carbon nanotubes (SWNTs) were used to host activated carbon (aC) microparticles to fabricate freestanding composite electrodes without the use of polymer binders. The aC-SWNT composite electrodes with up to 50 wt. % aC showed specific surface areas approaching 1000 m2/g and electrical conductivities >36 S/cm. The composite electrodes possessed the properties of both pure SWNT electrodes (e.g. low ohmic drop and rapid ion diffusion) and activated carbon particles (e.g. high specific capacitance). With an interconnected mesoporous microstructure and high electrical conductivity, the CNT networks provide an attractive alternative to polymer binders for forming freestanding electrodes for electrical energy storage devices. Here we show that micron-sized particles can be supported in this framework to utilize the performance enhancement and robustness provided by CNTs. Symmetric electrochemical capacitors fabricated with the electrodes in 6 M potassium hydroxide (KOH) aqueous electrolyte maintained specific capacitances of more than 45 F/g after 30,000 constant-current charge–discharge cycles with a current of 3.6 mA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M.E. Kozlov, J. Oh, N. Rawat, C.S. Haines, M.H. Haque, V. Aare, S. Stoughton, A.A. Zakhidov, R.H. Baughman, Science 331, 6013 (2011)

    Article  Google Scholar 

  2. A. Izadi-Najafabadi, T. Yamada, D.N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, K. Hata, ACS Nano 5, 2 (2011)

    Article  Google Scholar 

  3. R.K. Das, B. Liu, J.R. Reynolds, A.G. Rinzler, Nano Lett. 9, 2 (2009)

    Article  Google Scholar 

  4. L. Cui, L. Hu, J.W. Choi, Y. Cui, ACS Nano 4, 7 (2010)

    Article  Google Scholar 

  5. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colber, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273, 5274 (1996)

    Article  Google Scholar 

  6. J.G. Park, J. Louis, Q. Cheng, J. Bao, J.R. Smithyman, R. Liang, B. Wang, C. Zhang, J.S. Brooks, L. Kramer, P. Fanchasis, D. Dorough, Nanotechnology 20, 41 (2009)

    Google Scholar 

  7. R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Adv. Funct. Mater. 18, 17 (2008)

    Article  Google Scholar 

  8. J.G. Park, J. Smithyman, C. Lin, A. Cooke, A.W. Kismarahardja, S. Li, R. Liang, J.S. Brooks, C. Zhang, B. Wang, J. Appl. Phys. 106, 10 (2009)

    Google Scholar 

  9. K. Yanagi, H. Udoguchi, S. Sagitani, Y. Oshima, T. Takenobu, H. Kataura, T. Ishida, K. Matsuda, Y. Maniwa, ACS Nano 4, 7 (2010)

    Article  Google Scholar 

  10. F. Beguin, E. Frackowiak, Carbons for Electrochemical Energy Storage and Conversion Systems (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  11. E. Frackowiak, F. Beguin, Carbon 40, 10 (2002)

    Article  Google Scholar 

  12. S.Y. Chew, S.H. Ng, J. Wang, P. Novak, F. Krumeich, S.L. Chou, J. Chen, H.K. Liu, Carbon 47, 13 (2009)

    Article  Google Scholar 

  13. J.C. Groen, L.A. Peffer, J. Perez-Ramirez, Micropor. Mesopor. Mater. 60 (2003). doi:10.1016/S1387-1811(03)00339-1

  14. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 5794 (2006)

    Article  Google Scholar 

  15. A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Adv. Mater. 22, 35 (2010)

    Article  Google Scholar 

  16. A.A. Zakhidov, D. Suh, A.A. Kuznetsov, J.N. Barisci, E. Munoz, A.B. Dalton, S. Collins, V.H. Ebron, M. Zhang, J.P. Ferraris, A.A. Zakhidov, R.H. Baughman, Adv. Funct. Mater. 19, 14 (2009)

    Article  Google Scholar 

  17. J.N. Barisci, G.G. Wallace, R.H. Baughman, J. Electrochem. Soc. 147, 12 (2000)

    Article  Google Scholar 

  18. X. Li, J. Rong, B. Wei, ACS Nano 4, 10 (2010)

    Google Scholar 

  19. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York, 1999)

    Google Scholar 

  20. E. Frackowiak, F. Beguin, Carbon 40 (2002). doi:10.1016/S0008-6223(02)00045-3

Download references

Acknowledgements

The authors would like to thank the High-Performance Materials Institute and the FSU Research Foundation GAP Grant Program for support and funding and Maxwell Technologies for providing materials. JS thanks Dr. Wei Zhu, Annadanesh Shellikeri, Wanjun (Ben) Cao and Melissa Macarian for their assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Smithyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smithyman, J., Moench, A., Liang, R. et al. Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles. Appl. Phys. A 107, 723–731 (2012). https://doi.org/10.1007/s00339-012-6790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6790-0

Keywords

Navigation