Skip to main content
Log in

Recrystallization of amorphous nanotracks and uniform layers generated by swift-ion-beam irradiation in lithium niobate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  2. M. Nastase, J.W. Mayer, J.H. Hirvonen, Ion–Solid Interactions: Fundamental and Applications (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  3. F. Agulló-López, R.C. Catlow, P.D. Townsend, Point Defects in Materials (Academic Press, New York, 1984)

    Google Scholar 

  4. A. Rivera, J. Olivares, G. García, J.M. Cabrera, F. Agulló-Rueda, F. Agulló-López, Phys. Status Solidi A 206, 1109 (2009)

    Article  ADS  Google Scholar 

  5. C.S. Schnohr, P. Kluth, A.P. Byrne, G.J. Foran, M.C. Ridway, Phys. Rev. B 77, 073204 (2008)

    Article  ADS  Google Scholar 

  6. S.M.M. Ramos, R. Brenier, B. Canut, G. Fuchs, P. Thevenard, M. Trilleux, A. Meftah, M. Toulemonde, J. Appl. Phys. 77, 2952 (1995)

    Article  ADS  Google Scholar 

  7. B. Canut, S.M.M. Ramos, R. Brenier, P. Thevenard, J.L. Loubet, M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 107, 194 (1996)

    Article  ADS  Google Scholar 

  8. F. Thibaud, J. Cousty, E. Balanzat, S. Bouffard, Phys. Rev. Lett. 67, 1582 (1991)

    Article  ADS  Google Scholar 

  9. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, Appl. Phys. Lett. 89, 071923 (2006)

    Article  ADS  Google Scholar 

  10. P. Kluth, C.S. Schnohr, O.H. Pakarinen, F. Djurabekova, D.J. Sprouster, R. Giuliani, M.C. Ridway, A.P. Byrne, C. Trautmann, D.J. Cookson, K. Nordlund, M. Toulemonde, Phys. Rev. Lett. 101, 175503 (2008)

    Article  ADS  Google Scholar 

  11. N. Itoh, D.M. Duffy, S. Khakshouri, A.M. Stoneham, J. Phys., Condens. Matter 21, 474205 (2009)

    Article  ADS  Google Scholar 

  12. J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, J.C. Soares, Appl. Phys. A 81, 1465 (2005)

    Article  ADS  Google Scholar 

  13. G. García, F. Agulló-López, J. Olivares-Villegas, A. García-Navarro, J. Appl. Phys. 99, 1 (2006)

    Google Scholar 

  14. Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, J. Phys., Condens. Matter 34, 6733 (1994)

    Article  ADS  Google Scholar 

  15. G. Szenes, Phys. Rev. B 51, 8026 (1995)

    Article  ADS  Google Scholar 

  16. M. Toulemonde, W. Assman, C. Dufour, A. Meftah, F. Studer, C. Trautmann, in Ion Beam Science: Solved and Unsolved Problems, ed. by P. Sigmund (The Royal Danish Academy of Sciences and Letters, Copenhagen, 2006), p. 263

    Google Scholar 

  17. A. Kamarou, W. Wesch, E. Wendler, A. Undisz, M. Rettenmayr, Phys. Rev. B 73, 184107 (2007)

    Article  ADS  Google Scholar 

  18. N. Itoh, A.M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  19. F. Agulló-López, A. Méndez, G. García, J. Olivares, J.M. Cabrera, Phys. Rev. B 74, 174109 (2006)

    Article  ADS  Google Scholar 

  20. A. Rivera, A. Méndez, G. García, J. Olivares, J.M. Cabrera, F. Agulló-López, J. Lumin. 128, 703–707 (2008)

    Article  Google Scholar 

  21. H.J. Fecht, Nature (London) 356, 133 (1992)

    Article  ADS  Google Scholar 

  22. R. Spohr, in Ion Tracks and Microtechnology: Basic Principles and Applications, ed. by K. Bethge (Vieweg, Braunschweig, 1990)

    Google Scholar 

  23. M. Toulemonde, C. Trautmann, E. Balanzat, K. Horjt, A. Weidinger, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 216, 1 (2004)

    Article  ADS  Google Scholar 

  24. J. Chen, R. Könenkamp, Appl. Phys. Lett. 82, 4782 (2003)

    Article  ADS  Google Scholar 

  25. M. Sima, I. Enculescu, C. Trautmann, R. Neumann, J. Optoelectron. Adv. Mater. 6, 124 (2004)

    Google Scholar 

  26. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005)

    Article  ADS  Google Scholar 

  27. J. Olivares, M.L. Crespillo, O. Caballero-Calero, M.D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, F. Agulló-López, Opt. Express 17, 24176 (2009)

    Article  ADS  Google Scholar 

  28. C.A. Merchant, P. Scrutton, S. García-Blanco, C. Hnatovski, R.S. Taylor, A. García-Navarro, G. García, F. Agulló-López, J. Olivares, A.S. Helmy, J.S. Aitchison, IEEE J. Quantum Electron. 45(4), 373 (2009)

    Article  Google Scholar 

  29. A. Majkic, M. Koechlin, G. Poberaj, P. Günter, Opt. Express 16, 8769 (2008)

    Article  ADS  Google Scholar 

  30. C.W. White, L.A. Boatner, P.S. Sklad, C.J. McHargue, J. Rankin, G.C. Farlow, M.J. Aziz, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 32, 11 (1988)

    Article  ADS  Google Scholar 

  31. A. Meldrum, S.J. Zinkle, L.A. Boatner, R.C. Ewing, Phys. Rev. B 59, 3981 (1998)

    Article  ADS  Google Scholar 

  32. Z. Zhang, I.A. Ruskova, W.K. Chu, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 136–138, 404 (1998)

    Article  Google Scholar 

  33. W.J. Weber, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 166–167, 98 (2000)

    Article  Google Scholar 

  34. A. Meldrum, L.A. Boatner, W.J. Weber, R.C. Swing, J. Nucl. Mater. 300, 242 (2002)

    Article  ADS  Google Scholar 

  35. www.cmam.uam.es

  36. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, M. Carrascosa, J. Appl. Phys. 101, 33512 (2007)

    Article  Google Scholar 

  37. B. Canut, R. Brenier, A. Meftah, P. Moretti, S. Ould Salem, M. Pitaval, S.S.M. Ramos, P. Thevenard, M. Toulemonde, Radiat. Eff. Defects Solids 136, 307 (1995)

    Article  ADS  Google Scholar 

  38. S.S.M. Ramos, B. Canut, M. Ambri, C. Clement, E. Doorhye, M. Pitaval, P. Thevenard, M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 107, 254 (1996)

    Article  ADS  Google Scholar 

  39. S.S.M. Ramos, N. Bonardi, B. Canut, S. Della-Negra, Phys. Rev. B 57, 189 (1998)

    Article  ADS  Google Scholar 

  40. K. Awazu, X. Wang, M. Fujimaki, T. Komatsubara, T. Ikeda, Y. Ohki, J. Appl. Phys. 100, 044308 (2006)

    Article  ADS  Google Scholar 

  41. A. Dunlop, G. Jaskierowicz, S. Della-Negra, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 146, 302 (1998)

    Article  ADS  Google Scholar 

  42. M. Crespillo, M. Otto, A. Muñoz-Martin, J. Olivares, F. Agulló-López, M. Seibt, M. Toulemonde, C. Trautmann, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 267, 1035 (2009)

    Article  ADS  Google Scholar 

  43. G.G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 92, 6477 (2002)

    Article  ADS  Google Scholar 

  44. A. Benyagoub, A. Audren, L. Thomé, F. Garrido, Appl. Phys. Lett. 89, 241914 (2006)

    Article  ADS  Google Scholar 

  45. Y. Zhang, J. Lian, C.M. Wang, W. Jiang, R.C. Ewing, W.J. Weber, Phys. Rev. B 72, 094112 (2005)

    Article  ADS  Google Scholar 

  46. I. Markov, Crystal Growth for Beginners, 2nd edn. (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  47. W. Johnson, R. Mehl, Trans. Metall. Soc. AIME 135, 416 (1939)

    Google Scholar 

  48. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

  49. A. Rivera, J. Olivares, M.L. Crespillo, G. García, M. Bianconi, F. Agulló-López, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 267, 1460 (2009)

    Article  ADS  Google Scholar 

  50. A. Rivera, M.L. Crespillo, J. Olivares, G. García, F. Agulló-López, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 268, 2249 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Olivares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespillo, M.L., Caballero-Calero, O., Joco, V. et al. Recrystallization of amorphous nanotracks and uniform layers generated by swift-ion-beam irradiation in lithium niobate. Appl. Phys. A 104, 1143–1152 (2011). https://doi.org/10.1007/s00339-011-6391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6391-3

Keywords