Skip to main content
Log in

Multiscale simulation on electromigration of the oxygen vacancies in metal oxides

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The energetics and dynamics of electromigration of the oxygen vacancy is investigated with first-principles calculations and kinetic Monte Carlo methods. To simulate the charged oxygen vacancy under external fields within the first-principles approach, we introduce a slab model with electron-accepting dopants in the surface. The analysis of the density of states confirms that the oxygen vacancies are positively charged. When the external field is applied, the total energy of the slab linearly changes with respect to the position of the charged vacancy in the field direction, which allows for probing local permittivity around the vacancy site. The activation energy of vacancy migration is lowered along the field direction in a manner that the charge state of the vacancy is maintained along the migration path. Kinetic Monte Carlo simulations based on the first-principles inputs are also carried out and it is shown that the high-temperature condition is important for the fast redistribution of charged vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dawber, J.F. Scott, Integrated. Ferroelectrics 32, 259 (2001)

    Article  Google Scholar 

  2. B.H. Lee, J. Oh, H.H. Tseng, R. Jammy, H. Huff, Mater. Today 9, 32 (2006)

    Article  Google Scholar 

  3. E.P. Gusev, V. Narayanan, M.M. Frank, IBM J. Res. Dev. 50, 387 (2006)

    Article  Google Scholar 

  4. S. Guha, V. Narayanan, Phys. Rev. Lett. 98, 196101 (2007)

    Article  ADS  Google Scholar 

  5. E. Cho, B. Lee, C.-K. Lee, S. Han, S.H. Jeon, B.H. Park, Y.-S. Kim, Appl. Phys. Lett. 92, 233118 (2008)

    Article  ADS  Google Scholar 

  6. J. Robertson, O. Sharia, A.A. Demkov, Appl. Phys. Lett. 91, 132912 (2007)

    Article  ADS  Google Scholar 

  7. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  8. A. Sawa, Mater. Today 11, 28 (2008)

    Article  Google Scholar 

  9. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, Appl. Phys. Lett. 89, 042904 (2006)

    Article  ADS  Google Scholar 

  10. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  11. D. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X. Li, G. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 456, 148 (2010)

    Article  ADS  Google Scholar 

  12. S.A. Prosandeev, J. Phys., Condens. Matter 14, L745 (2002)

    Article  ADS  Google Scholar 

  13. P. Umari, A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002)

    Article  ADS  Google Scholar 

  14. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  15. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  16. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  17. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  18. L. Bengtsson, Phys. Rev. B 59, 12301 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Junquera, M.H. Cohen, K.M. Rabe, J. Phys., Condens. Matter 19, 213203 (2007)

    Article  ADS  Google Scholar 

  20. L. Yu, V. Ranjan, M.B. Nardelli, J. Bernholc, Phys. Rev. B 80, 165432 (2009)

    Article  ADS  Google Scholar 

  21. A.A. Demkov, A. Navrotsky, Materials Fundamentals of Gate Dielectrics (Springer, Amsterdam, 2005)

    Book  Google Scholar 

  22. A.K. Harman, S. Ninomiya, S. Adachi, J. Appl. Phys. 76, 8032 (1994)

    Article  ADS  Google Scholar 

  23. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997)

    Article  ADS  Google Scholar 

  24. M. Stengel, N.A. Spaldin, Nature 443, 679 (2006)

    Article  ADS  Google Scholar 

  25. B. Lee, C.-K. Lee, S. Han, J. Lee, C.S. Hwang, J. Appl. Phys. 103, 024106 (2008)

    Article  ADS  Google Scholar 

  26. C.-K. Lee, E. Cho, H. Lee, K. Seol, S. Han, Phys. Rev. B 76, 245110 (2007)

    Article  ADS  Google Scholar 

  27. G. Mills, H. Jonsson, G.K. Schenter, Surf. Sci. 324, 305 (1995)

    Article  ADS  Google Scholar 

  28. G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957)

    Article  ADS  Google Scholar 

  29. R. Krishnamurthy, Y.G. Yoon, D.J. Srolovitz, R. Car, J. Am. Ceram. Soc. 87, 1821 (2004)

    Article  Google Scholar 

  30. S. Kirkpatrick, E.P. Stoll, J. Comput. Phys. 40, 517 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  32. T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Appl. Phys. Lett. 86, 012107 (2005)

    Article  ADS  Google Scholar 

  33. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, IEEE Trans. Electron Devices 56, 186 (2009)

    Article  ADS  Google Scholar 

  34. J. Borghetti, D.B. Strukow, M.D. Pickett, J.J. Yang, D.R. Stewart, R.S. William, J. Appl. Phys. 106, 124504 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungwu Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, S.H., Son, WJ., Park, B.H. et al. Multiscale simulation on electromigration of the oxygen vacancies in metal oxides. Appl. Phys. A 102, 909–914 (2011). https://doi.org/10.1007/s00339-011-6272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6272-9

Keywords

Navigation